{"title":"Convergence of sub-series' and sub-signed series' in terms of the asymptotic ψ-density","authors":"Janne Heittokangas , Zinelaabidine Latreuch","doi":"10.1016/j.bulsci.2025.103683","DOIUrl":null,"url":null,"abstract":"<div><div>Given a non-negative real sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the series <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> diverges, it is known that the size of an infinite subset <span><math><mi>A</mi><mo>⊂</mo><mi>N</mi></math></span> can be measured in terms of the linear density such that the sub-series <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>A</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> either (a) converges or (b) still diverges. The purpose of this research is to study these convergence/divergence questions by measuring the size of the set <span><math><mi>A</mi><mo>⊂</mo><mi>N</mi></math></span> in a more precise way in terms of the recently introduced asymptotic <em>ψ</em>-density. The convergence of the associated sub-signed series <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is also discussed, where <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a real sequence with values restricted to the set <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103683"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given a non-negative real sequence such that the series diverges, it is known that the size of an infinite subset can be measured in terms of the linear density such that the sub-series either (a) converges or (b) still diverges. The purpose of this research is to study these convergence/divergence questions by measuring the size of the set in a more precise way in terms of the recently introduced asymptotic ψ-density. The convergence of the associated sub-signed series is also discussed, where is a real sequence with values restricted to the set .