Convergence of sub-series' and sub-signed series' in terms of the asymptotic ψ-density

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Janne Heittokangas , Zinelaabidine Latreuch
{"title":"Convergence of sub-series' and sub-signed series' in terms of the asymptotic ψ-density","authors":"Janne Heittokangas ,&nbsp;Zinelaabidine Latreuch","doi":"10.1016/j.bulsci.2025.103683","DOIUrl":null,"url":null,"abstract":"<div><div>Given a non-negative real sequence <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that the series <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> diverges, it is known that the size of an infinite subset <span><math><mi>A</mi><mo>⊂</mo><mi>N</mi></math></span> can be measured in terms of the linear density such that the sub-series <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>A</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> either (a) converges or (b) still diverges. The purpose of this research is to study these convergence/divergence questions by measuring the size of the set <span><math><mi>A</mi><mo>⊂</mo><mi>N</mi></math></span> in a more precise way in terms of the recently introduced asymptotic <em>ψ</em>-density. The convergence of the associated sub-signed series <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is also discussed, where <span><math><msub><mrow><mo>{</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a real sequence with values restricted to the set <span><math><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"204 ","pages":"Article 103683"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given a non-negative real sequence {cn}n such that the series n=1cn diverges, it is known that the size of an infinite subset AN can be measured in terms of the linear density such that the sub-series nAcn either (a) converges or (b) still diverges. The purpose of this research is to study these convergence/divergence questions by measuring the size of the set AN in a more precise way in terms of the recently introduced asymptotic ψ-density. The convergence of the associated sub-signed series n=1mncn is also discussed, where {mn}n is a real sequence with values restricted to the set {1,0,1}.
关于渐近ψ密度的子级数和子符号级数的收敛性
给定一个非负实数序列{cn}n,使得级数∑n=1∞cn发散,则已知无限子集a∧n的大小可以用线性密度来度量,使得子序列∑n∈Acn要么(a)收敛,要么(b)发散。本研究的目的是通过用最近引入的渐近ψ密度以更精确的方式测量集合A∧N的大小来研究这些收敛/散度问题。讨论了相关子符号级数∑n=1∞mncn的收敛性,其中{mn}n是一个实数列,其值限制于集合{−1,0,1}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信