全局线性柯西问题

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Faiza Derrab
{"title":"全局线性柯西问题","authors":"Faiza Derrab","doi":"10.1016/j.bulsci.2025.103740","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the study of the Fuchsian Cauchy problem. We establish the global existence and uniqueness of a solution in spaces of functions of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, <span><math><mi>k</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, with respect to the Fuchsian variable and entire with respect to the other variables. The method of proof is based on the application of the fixed point theorem in some Banach spaces defined by suitable majorant functions.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"206 ","pages":"Article 103740"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global linear Cauchy problem\",\"authors\":\"Faiza Derrab\",\"doi\":\"10.1016/j.bulsci.2025.103740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to the study of the Fuchsian Cauchy problem. We establish the global existence and uniqueness of a solution in spaces of functions of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span>, <span><math><mi>k</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mo>∞</mo><mo>}</mo></math></span>, with respect to the Fuchsian variable and entire with respect to the other variables. The method of proof is based on the application of the fixed point theorem in some Banach spaces defined by suitable majorant functions.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"206 \",\"pages\":\"Article 103740\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725001666\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725001666","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究傅氏柯西问题。在一类函数Ck, k∈N∪{∞}的空间中,建立了一个解对Fuchsian变量的整体存在唯一性,对其他变量的整体存在唯一性。利用不动点定理在由合适的主函数定义的Banach空间中的应用,给出了不动点定理的证明方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global linear Cauchy problem
This paper is devoted to the study of the Fuchsian Cauchy problem. We establish the global existence and uniqueness of a solution in spaces of functions of class Ck, kN{}, with respect to the Fuchsian variable and entire with respect to the other variables. The method of proof is based on the application of the fixed point theorem in some Banach spaces defined by suitable majorant functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信