Alex T Gong, Shi-Wen Olivia Yau, Hans B Erickson, Rudolph J Toepfer, Jessica Zhang, Aleah M Deschmidt, Conner J Parsey, Jack E Norfleet, Robert M Sweet
{"title":"Characterizing the Suture Pullout Force for Human Small Bowel.","authors":"Alex T Gong, Shi-Wen Olivia Yau, Hans B Erickson, Rudolph J Toepfer, Jessica Zhang, Aleah M Deschmidt, Conner J Parsey, Jack E Norfleet, Robert M Sweet","doi":"10.1115/1.4063951","DOIUrl":"10.1115/1.4063951","url":null,"abstract":"<p><p>Performing a small bowel anastomosis, or reconnecting small bowel segments, remains a core competency and critical step for the successful surgical management of numerous bowel and urinary conditions. As surgical education and technology moves toward improving patient outcomes through automation and increasing training opportunities, a detailed characterization of the interventional biomechanical properties of the human bowel is important. This is especially true due to the prevalence of anastomotic leakage as a frequent (3.02%) postoperative complication of small bowel anastomoses. This study aims to characterize the forces required for a suture to tear through human small bowel (suture pullout force, SPOF), while analyzing how these forces are affected by tissue orientation, suture material, suture size, and donor demographics. 803 tests were performed on 35 human small bowel specimens. A uni-axial test frame was used to tension sutures looped through 10 × 20 mm rectangular bowel samples to tissue failure. The mean SPOF of the small bowel was 4.62±1.40 N. We found no significant effect of tissue orientation (p = 0.083), suture material (p = 0.681), suture size (p = 0.131), age (p = 0.158), sex (p = .083), or body mass index (BMI) (p = 0.100) on SPOF. To our knowledge, this is the first study reporting human small bowel SPOF. Little research has been published about procedure-specific data on human small bowel. Filling this gap in research will inform the design of more accurate human bowel synthetic models and provide an accurate baseline for training and clinical applications.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pauline Morin, Antoine Muller, Georges Dumont, Charles Pontonnier
{"title":"Comparison of Two Contact Detection Methods for Ground Reaction Forces and Moment Estimation During Sidestep Cuts, Runs, and Walks.","authors":"Pauline Morin, Antoine Muller, Georges Dumont, Charles Pontonnier","doi":"10.1115/1.4064034","DOIUrl":"10.1115/1.4064034","url":null,"abstract":"<p><p>Force platforms often limit the analysis of human movement to the laboratory. Promising methods for estimating ground reaction forces and moments (GRF&M) can overcome this limitation. The most effective family of methods consists of minimizing a cost, constrained by the subject's dynamic equilibrium, for distributing the force over the contact surface on the ground. The detection of contact surfaces over time is dependent on numerous parameters. This study proposes to evaluate two contact detection methods: the first based on foot kinematics and the second based on pressure sole data. Optimal parameters for these two methods were identified for walking, running, and sidestep cut tasks. The results show that a single threshold in position or velocity is sufficient to guarantee a good estimate. Using pressure sole data to detect contact improves the estimation of the position of the center of pressure (CoP). Both methods demonstrated a similar level of accuracy in estimating ground reaction forces.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maïté Croonenborghs, Karim Ismail, Maryline Mousny, Laurent Delannay, Joris Everaerts, Alexander M Korsunsky, Pascal J Jacques, Thomas Pardoen
{"title":"Residual Stresses in Surgical Growing Rods.","authors":"Maïté Croonenborghs, Karim Ismail, Maryline Mousny, Laurent Delannay, Joris Everaerts, Alexander M Korsunsky, Pascal J Jacques, Thomas Pardoen","doi":"10.1115/1.4063745","DOIUrl":"10.1115/1.4063745","url":null,"abstract":"<p><p>The treatment of early onset scoliosis using surgical growing rods suffers from high failure rate. Fatigue resistance can be improved by inducing compressive residual stresses within the near surface region. An in-depth investigation of the residual stresses profile evolution is performed through the sequence of material processing steps followed by surgeons handling operations, in connection to material properties. The final goal is to guide further improvements of growing rod lifetime. Residual stress evaluation was carried out on Ti-6Al-4V rods using digital image correlation applied to microbeam ring-core milling by focused ion beam. This provided experimental stress profiles in shot-peened rods before and after bending and demonstrated that compressive residual stresses are maintained at both concave and convex rod sides. A finite element model using different core and skin conditions was validated by comparison to experiments. The combination of an initial shot peening profile associated with a significant level of backstress was found to primarily control the generation of compressive stresses at the rod surface after bending. Guidelines to promote larger compressive stresses at the surface were formulated based on a parametric analysis. The analysis revealed the first order impact of the initial yield strength, kinematic hardening parameters and intensity of the shot peening operation, while the bending angle and the depth of shot peening stresses were found to be of minor importance. Materials exhibiting large kinematic hardening and low yield strength should be selected in order to induce compressive residual stresses at key fatigue initiation site.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41220411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaitlyn E Downer, Kayla M Pariser, Margo C Donlin, Jill S Higginson
{"title":"How Important is Position in Adaptive Treadmill Control?","authors":"Kaitlyn E Downer, Kayla M Pariser, Margo C Donlin, Jill S Higginson","doi":"10.1115/1.4063823","DOIUrl":"10.1115/1.4063823","url":null,"abstract":"<p><p>To more closely mimic overground walking, researchers are developing adaptive treadmills (ATMs) that update belt speed in real-time based on user gait mechanics. Many existing ATM control schemes are solely based on position on the belt and do not respond to changes in gait mechanics, like propulsive forces, that result in increased overground walking speed. To target natural causal mechanisms to alter speed, we developed an ATM controller that adjusts speed via changes in position, step length, and propulsion. Gains on each input dictate the impact of the corresponding parameter on belt speed. The study objective was to determine the effect of modifying the position gain on self-selected walking speed, measures of propulsion, and step length. Twenty-two participants walked at their self-selected speed with four ATM controllers, each with a unique position gain. Walking speed, anterior and posterior ground reaction force peaks and impulses, net impulse, and step length were compared between conditions. Smaller position gains promoted more equivalent anterior and posterior impulses, resulting in a net impulse closer to zero (p = 0.0043), a characteristic of healthy gait. Walking speed, anterior and posterior ground reaction force peaks and impulses, and step length did not change between conditions (all p > 0.05). These results suggest that reducing the importance of position in the ATM controller may promote more balanced anterior and posterior impulses, possibly improving the efficacy of the ATM for gait rehabilitation by emphasizing changes in gait mechanics instead of position to naturally adjust speed.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joy A Iaconianni, Sriram Balasubramanian, Michele J Grimm, Bernard Gonik, Anita Singh
{"title":"Studying the Effects of Shoulder Dystocia and Neonate-Focused Delivery Maneuvers on Brachial Plexus Strain: A Computational Study.","authors":"Joy A Iaconianni, Sriram Balasubramanian, Michele J Grimm, Bernard Gonik, Anita Singh","doi":"10.1115/1.4064313","DOIUrl":"10.1115/1.4064313","url":null,"abstract":"<p><p>The purpose of this computational study was to investigate the effects of neonate-focused clinical delivery maneuvers on brachial plexus (BP) during shoulder dystocia. During shoulder dystocia, the anterior shoulder of the neonate is obstructed behind the symphysis pubis of the maternal pelvis, postdelivery of the neonate's head. This is managed by a series of clinical delivery maneuvers. The goal of this study was to simulate these delivery maneuvers and study their effects on neonatal BP strain. Using madymo models of a maternal pelvis and a 90th-percentile neonate, various delivery maneuvers and positions were simulated including the lithotomy position alone of the maternal pelvis, delivery with the application of various suprapubic pressures (SPPs), neonate in an oblique position, and during posterior arm delivery maneuver. The resulting BP strain (%) along with the required maternal delivery force was reported in these independently simulated scenarios. The lithotomy position alone served as the baseline. Each of the successive maneuvers reported a decrease in the required delivery force and resulting neonatal BP strain. As the applied SPP force increased (three scenarios simulated), the required maternal delivery force and neonatal BP strain decreased. A further decrease in both delivery force and neonatal BP strain was observed in the oblique position, with the lowest delivery force and neonatal BP strain reported during the posterior arm delivery maneuver. Data obtained from the improved computational models in this study enhance our understanding of the effects of clinical maneuvers on neonatal BP strain during complicated birthing scenarios such as shoulder dystocia.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138813222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomechanical Evaluation of Tracheal Needle Puncture Forces: Comparative Analysis of Annular Ligaments and Tracheal Cartilage.","authors":"Cheick Sissoko, Victoria Walker, Gregory R Dion","doi":"10.1115/1.4063821","DOIUrl":"10.1115/1.4063821","url":null,"abstract":"<p><p>Percutaneous tracheotomies (PCT) are commonly performed minimally invasive procedures involving the creation of an airway opening through an incision or puncture of the tracheal wall. While the medical intervention is crucial for critical care and the management of acute respiratory failure, tracheostomy complications can lead to severe clinical symptoms due to the alterations of the airways biomechanical properties/structures. The causes and mechanisms underlaying the development of these post-tracheotomy complications remain largely unknown. In this study, we aimed to investigate the needle puncture process and its biomechanical characteristics by using a well establish porcine ex vivo trachea to simulate the forces involved in accessing airways during PCT at varying angular approaches. Given that many procedures involve inserting a needle into the trachea without direct visualization of the tracheal wall, concerns have been raised over the needle punctures through the cartilaginous rings as compared to the space between them may result in fractured cartilage and post-tracheostomy airway complications. We report a difference in puncture force between piercing the cartilage and the annular ligaments and observe that the angle of puncture does not significantly alter the puncture forces. The data collected in this study can guide the design of relevant biomechanical feedback system during airway access procedures and ultimately help refine and optimize PCT.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upper Extremity Muscle Activation Pattern Prediction Through Synergy Extrapolation and Electromyography-Driven Modeling.","authors":"Shadman Tahmid, Josep M Font-Llagunes, James Yang","doi":"10.1115/1.4063899","DOIUrl":"10.1115/1.4063899","url":null,"abstract":"<p><p>Patients with neuromuscular disease fail to produce necessary muscle force and have trouble maintaining joint moment required to perform activities of daily living. Measuring muscle force values in patients with neuromuscular disease is important but challenging. Electromyography (EMG) can be used to obtain muscle activation values, which can be converted to muscle forces and joint torques. Surface electrodes can measure activations of superficial muscles, but fine-wire electrodes are needed for deep muscles, although it is invasive and require skilled personnel and preparation time. EMG-driven modeling with surface electrodes alone could underestimate the net torque. In this research, authors propose a methodology to predict muscle activations from deeper muscles of the upper extremity. This method finds missing muscle activation one at a time by combining an EMG-driven musculoskeletal model and muscle synergies. This method tracks inverse dynamics joint moments to determine synergy vector weights and predict muscle activation of selected shoulder and elbow muscles of a healthy subject. In addition, muscle-tendon parameter values (optimal fiber length, tendon slack length, and maximum isometric force) have been personalized to the experimental subject. The methodology is tested for a wide range of rehabilitation tasks of the upper extremity across multiple healthy subjects. Results show this methodology can determine single unmeasured muscle activation up to Pearson's correlation coefficient (R) of 0.99 (root mean squared error, RMSE = 0.001) and 0.92 (RMSE = 0.13) for the elbow and shoulder muscles, respectively, for one degree-of-freedom (DoF) tasks. For more complicated five DoF tasks, activation prediction accuracy can reach up to R = 0.71 (RMSE = 0.29).</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71415337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin Rodriguez, Peter Campbell, Joseph Borrello, Ian Odland, Tyree Williams, Eugene I Hrabarchuk, Tirone Young, Anirudh Sharma, Alexander J Schupper, Benjamin Rapoport, Robert Ivkov, Constantinos Hadjipanayis
{"title":"A Novel Port to Facilitate Magnetic Hyperthermia Therapy for Glioma.","authors":"Benjamin Rodriguez, Peter Campbell, Joseph Borrello, Ian Odland, Tyree Williams, Eugene I Hrabarchuk, Tirone Young, Anirudh Sharma, Alexander J Schupper, Benjamin Rapoport, Robert Ivkov, Constantinos Hadjipanayis","doi":"10.1115/1.4063556","DOIUrl":"10.1115/1.4063556","url":null,"abstract":"<p><p>High-grade gliomas (HGG) are the most common primary brain malignancy and continue to be associated with a dismal prognosis (median survival rate of 15-18 months) with standard of care therapy. Magnetic hyperthermia therapy (MHT) is an emerging intervention that leverages the ferromagnetic properties of magnetic iron-oxide nanoparticles (MIONPs) to target cancer cells that are otherwise left behind after resection. We report a novel port device to facilitate localization, delivery, and temperature measurement of MIONPs within a target lesion for MHT therapy. We conducted an in-depth literature and intellectual property review to define specifications of the conceived port device. After setting the design parameters, a thorough collaboration with neurological surgeons guided the iterative modeling process. A prototype was developed using Fusion 360 (Autodesk, San Rafael, CA) and printed on a Form 3 printer (Formlabs, Medford, MA) in Durable resin. The prototype was then tested in a phantom skull printed on a Pro-Jet 660Pro 3D printer (3D Systems, Rock Hill, SC) and a brain model based on mechanical and electrochemical properties of native brain tissue. This phantom underwent MHT heating tests using an alternating magnetic field (AMF) sequence based on current MHT workflow. Successful localization, delivery, and temperature measurement were demonstrated. The purpose of this study was twofold: first, to create and validate the procedural framework for a novel device, providing the groundwork for an upcoming comprehensive animal trial and second, to elucidate a cooperative approach between engineers and clinicians that propels advancements in medical innovation.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41152759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elmira Pourreza, Naci B Yaradanakul, Berat C Cengiz, Aysu Duyan Camurdan, Murat Zinnuroglu, Senih Gurses
{"title":"Spatiotemporal Evolution of Toddlers' Regional Foot Pressure Distribution and Center of Pressure at Antero-Posterior Axis During Learning of Standing.","authors":"Elmira Pourreza, Naci B Yaradanakul, Berat C Cengiz, Aysu Duyan Camurdan, Murat Zinnuroglu, Senih Gurses","doi":"10.1115/1.4063820","DOIUrl":"10.1115/1.4063820","url":null,"abstract":"<p><p>We investigated quiet stance of newly standing toddlers every three months (trimesters) of their second year of life. Their anteroposterior center-of-pressure (CoPx) velocity and centroidal frequency (CFREQ: 2.36 ± 0.10 to 1.50 ± 0.11 Hz) decreased over time. Besides, mean pressures revealed a potential role-sharing of foot regions in learning and control aspects of standing, with hindfoot carrying the highest (23.89 ± 6.47 kPa) pressure while forefoot the lowest (10.26 ± 2.51 kPa). The highest CFREQ of pressure signal was at midfoot. Through regional CoPx, forefoot has manifested the highest CFREQ (2.10 ± 0.40 Hz) and 90% power frequency (90%PF), whereas hindfoot presented the lowest (CFREQ: 1.80 ± 0.33 Hz). CFREQ and 90%PF of pressure and regional CoPx significantly decreased throughout the trimesters.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49685245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas S Stoltze, Anderson S C Oliveira, John Rasmussen, Michael S Andersen
{"title":"Evaluation of an Unloading Concept for Knee Osteoarthritis: A Pilot Study in a Small Patient Group.","authors":"Jonas S Stoltze, Anderson S C Oliveira, John Rasmussen, Michael S Andersen","doi":"10.1115/1.4064031","DOIUrl":"10.1115/1.4064031","url":null,"abstract":"<p><p>Joint compressive forces have been identified as a risk factor for osteoarthritis disease progression. Therefore, unloader braces are a common treatment with the aim of relieving pain, but their effects are not clearly documented in the literature. A knee brace concept was tested with the aim of reducing joint loads and pain in knee osteoarthritis patients by applying an extension moment exclusively during the stance phase. The ideal effects were evaluated during gait based on musculoskeletal modeling of six patients, and experimental tests with a prototype brace were conducted on one patient. The effects were evaluated using electromyography measurements and musculoskeletal models to evaluate the muscle activation and knee compressive forces, respectively. The ideal brace simulations revealed a varying reduction of the first peak knee force between 3.5% and 33.8% across six patients whereas the second peak was unaffected. The prototype reduced the peak vasti muscle activation with 7.9% and musculoskeletal models showed a reduction of the first peak knee compressive force of up to 26.3%. However, the prototype brace increased the knee joint force impulse of up to 17.1% and no immediate pain reduction was observed. The reduction of the first peak knee compressive force, using a prototype on a single patient, indicates a promising effect from an applied knee extension moment for reducing knee joint loads during normal gait. However, further clinical experiments with this brace method are required to evaluate the long-term effects on both pain and disease progression in knee osteoarthritis patients.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}