S Emma Sarles, Edward C Hensel, Janessa Terry, Caleb Nuss, Risa J Robinson
{"title":"仿生气溶胶曝露系统的流速和壁面剪切应力特征。","authors":"S Emma Sarles, Edward C Hensel, Janessa Terry, Caleb Nuss, Risa J Robinson","doi":"10.1115/1.4064549","DOIUrl":null,"url":null,"abstract":"<p><p>Current in vitro emissions and exposure systems lack biomimicry, use unrealistic flow conditions, produce unrealistic dose, and provide inaccurate biomechanical cues to cell cultures, limiting ability to correlate in vitro outcomes with in vivo health effects. A biomimetic in vitro system capable of puffing aerosol and clean air inhalation may empower researchers to investigate complex questions related to lung injury and disease. A biomimetic aerosol exposure system (BAES), including an electronic cigarette adapter, oral cavity module (OCM), and bifurcated exposure chamber (BEC) was designed and manufactured. The fraction of aerosol deposited in transit to a filter pad or lost as volatiles was 0.116±0.021 in a traditional emissions setup versus 0.098 ± 0.015 with the adapter. The observed flowrate was within 5% of programed flowrate for puffing (25 mL/s), puff-associated respiration (450 mL/s), and tidal inhalation (350 mL/s). The maximum flowrate observed in the fabricated BAES was 450 mL/s, exceeding the lower target nominal wall shear stress of 0.025 Pa upstream of the bifurcation and fell below the target of 0.02 Pa downstream. This in vitro system addresses several gaps observed in commercially available systems and may be used to study many inhaled aerosols. The current work illustrates how in silico models may be used to correlate results of an in vitro study to in vivo conditions, rather than attempting to design an in vitro system that performs exactly as the human respiratory tract.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flow Rate and Wall Shear Stress Characterization of a Biomimetic Aerosol Exposure System.\",\"authors\":\"S Emma Sarles, Edward C Hensel, Janessa Terry, Caleb Nuss, Risa J Robinson\",\"doi\":\"10.1115/1.4064549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current in vitro emissions and exposure systems lack biomimicry, use unrealistic flow conditions, produce unrealistic dose, and provide inaccurate biomechanical cues to cell cultures, limiting ability to correlate in vitro outcomes with in vivo health effects. A biomimetic in vitro system capable of puffing aerosol and clean air inhalation may empower researchers to investigate complex questions related to lung injury and disease. A biomimetic aerosol exposure system (BAES), including an electronic cigarette adapter, oral cavity module (OCM), and bifurcated exposure chamber (BEC) was designed and manufactured. The fraction of aerosol deposited in transit to a filter pad or lost as volatiles was 0.116±0.021 in a traditional emissions setup versus 0.098 ± 0.015 with the adapter. The observed flowrate was within 5% of programed flowrate for puffing (25 mL/s), puff-associated respiration (450 mL/s), and tidal inhalation (350 mL/s). The maximum flowrate observed in the fabricated BAES was 450 mL/s, exceeding the lower target nominal wall shear stress of 0.025 Pa upstream of the bifurcation and fell below the target of 0.02 Pa downstream. This in vitro system addresses several gaps observed in commercially available systems and may be used to study many inhaled aerosols. The current work illustrates how in silico models may be used to correlate results of an in vitro study to in vivo conditions, rather than attempting to design an in vitro system that performs exactly as the human respiratory tract.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064549\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064549","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Flow Rate and Wall Shear Stress Characterization of a Biomimetic Aerosol Exposure System.
Current in vitro emissions and exposure systems lack biomimicry, use unrealistic flow conditions, produce unrealistic dose, and provide inaccurate biomechanical cues to cell cultures, limiting ability to correlate in vitro outcomes with in vivo health effects. A biomimetic in vitro system capable of puffing aerosol and clean air inhalation may empower researchers to investigate complex questions related to lung injury and disease. A biomimetic aerosol exposure system (BAES), including an electronic cigarette adapter, oral cavity module (OCM), and bifurcated exposure chamber (BEC) was designed and manufactured. The fraction of aerosol deposited in transit to a filter pad or lost as volatiles was 0.116±0.021 in a traditional emissions setup versus 0.098 ± 0.015 with the adapter. The observed flowrate was within 5% of programed flowrate for puffing (25 mL/s), puff-associated respiration (450 mL/s), and tidal inhalation (350 mL/s). The maximum flowrate observed in the fabricated BAES was 450 mL/s, exceeding the lower target nominal wall shear stress of 0.025 Pa upstream of the bifurcation and fell below the target of 0.02 Pa downstream. This in vitro system addresses several gaps observed in commercially available systems and may be used to study many inhaled aerosols. The current work illustrates how in silico models may be used to correlate results of an in vitro study to in vivo conditions, rather than attempting to design an in vitro system that performs exactly as the human respiratory tract.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.