Journal of Biomechanical Engineering-Transactions of the Asme最新文献

筛选
英文 中文
Hip Trajectory Error (HTE): A Framework for Designing and Evaluating Passive Prosthetic Feet for People With an Above-Knee Amputation.
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-04-02 DOI: 10.1115/1.4068336
Nina T Petelina, Amanda L Shorter, Amos G Winter
{"title":"Hip Trajectory Error (HTE): A Framework for Designing and Evaluating Passive Prosthetic Feet for People With an Above-Knee Amputation.","authors":"Nina T Petelina, Amanda L Shorter, Amos G Winter","doi":"10.1115/1.4068336","DOIUrl":"https://doi.org/10.1115/1.4068336","url":null,"abstract":"<p><p>This paper presents a novel Hip Trajectory Error (HTE) framework for designing prosthetic feet specifically for people with an above-knee amputation. Finding a high-performance prosthetic foot for people with an above-knee amputation can greatly improve mobility and prosthesis satisfaction of a user and provide a predictable interaction with the knee prosthesis. The HTE framework accounts for the lack of early and mid-stance knee flexion, a common gait deviation in people with above-knee amputation compared to people with a below-knee amputation and able-bodied subjects. The goal of the HTE framework is to design prosthetic feet that closely replicate able-bodied hip motion, a kinematic target that is correlated with sufficient shock absorption lost due to the lack of knee flexion during early and mid-stance. This paper presents a design process to optimize HTE prosthetic feet and shows that the performance of the foot is not constrained by ankle height determined by the prosthetic knee choice. In simulation, HTE feet also demonstrate a closer replication of able-bodied hip motion compared to Lower Leg Trajectory Error framework, which designs prosthetic feet specifically for people with a below-knee amputation. The HTE framework may provide the above-knee amputee population around the world with high-performance prosthetic feet designed specifically for their needs, which could improve the overall function of the prosthetic limb and user satisfaction.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-19"},"PeriodicalIF":1.7,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Meta-Analysis Study to Define Variations In Murine Long Bone Biomechanical Testing. 界定小鼠长骨生物力学测试差异的元分析研究
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-04-02 DOI: 10.1115/1.4068318
Isabella Stewart, Mason Garcia, Namitha Alluri, Maria Buzo, Mario Keko, Ara Nazarian
{"title":"A Meta-Analysis Study to Define Variations In Murine Long Bone Biomechanical Testing.","authors":"Isabella Stewart, Mason Garcia, Namitha Alluri, Maria Buzo, Mario Keko, Ara Nazarian","doi":"10.1115/1.4068318","DOIUrl":"https://doi.org/10.1115/1.4068318","url":null,"abstract":"<p><p>A systematic literature search and meta-analysis were performed to evaluate the variability in biomechanical testing of murine long bones, specifically focused on point-bending tests of mice femora. Due to the lack of standardized protocols for these tests, the assessment quantifies the heterogeneity in reported mechanical properties across existing literature. This study followed PRISMA and STROBE guidelines to search publicly available databases for relevant studies. After title and abstract screening, full-text reviews identified 73 articles meeting the inclusion criteria. Data were extracted from these studies, including stiffness, maximum load, modulus, and ultimate stress values for both 3-point and 4-point bending tests. The data were analyzed through ANOVA and meta-regression to assess variability caused by age, sex, and genetic strain. The reviewers also assessed the quality of the included studies. The meta-analysis revealed significant heterogeneity in reported mechanical properties, with I2 values ranging from 72% to 100% in the 3 point-bending test of pooled genetic strains. This heterogeneity persisted even after accounting for age, sex, and genetic strain differences. The review concludes that nonstandardized testing setups are the likely major source of the observed variability in reported data more than the population characteristics of the mice, highlighting the need for more consistent testing methodologies in future studies.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-45"},"PeriodicalIF":1.7,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Simulations of a Bioprinted Pulsatile Fontan Conduit.
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-04-02 DOI: 10.1115/1.4068319
Zinan Hu, Jessica Herrmann, Erica Schwarz, Fannie Gerosa, Nir Emuna, Jay Humphrey, Adam W Feinberg, Tain-Yen Hsia, Mark Skylar-Scott, Alison Marsden
{"title":"Multiphysics Simulations of a Bioprinted Pulsatile Fontan Conduit.","authors":"Zinan Hu, Jessica Herrmann, Erica Schwarz, Fannie Gerosa, Nir Emuna, Jay Humphrey, Adam W Feinberg, Tain-Yen Hsia, Mark Skylar-Scott, Alison Marsden","doi":"10.1115/1.4068319","DOIUrl":"https://doi.org/10.1115/1.4068319","url":null,"abstract":"<p><p>For single ventricle congenital heart patients, Fontan surgery is the final stage in a series of palliative procedures, bypassing the heart to enable passive flow of deoxygenated blood from the inferior vena cava (IVC) to the pulmonary arteries. This circulation leads to severely elevated central venous pressure, diminished cardiac output, and thus numerous sequelae and high mortality rates. To address these issues, we propose a bioprinted pulsatile conduit providing a secondary power source for Fontan circulation. A multiphysics computational framework was developed to predict conduit performance and provide design guidance prior to printing. Physics components included electrophysiology, cardiomyocyte contractility, and fluid-structure interaction coupled to a closed-loop lumped parameter network representing Fontan physiology. A range of myocardial contractility values was considered and simulated. The initial conduit design with adult ventricular cardiomyocyte contractility values coupled to a Purkinje network demonstrated potential to reduce liver (IVC) pressure from 16.4 to 9.3 mmHg and increase cardiac output by 29%. After systematically assessing the impacts of contraction duration, fiber direction, and valve placement on conduit performance, we identified a favorable design that successfully reduces liver pressure to 7.3 mmHg and increases cardiac output by 38%, almost normalizing adverse hemodynamics in the lower venous circulation. Valves at the input and output of the conduit are essential to achieve these satisfactory results; without valves, performance is degraded. However, a potential drawback of the design is the elevation of superior vena cava (SVC) pressure, which varies linearly with liver pressure reduction.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-43"},"PeriodicalIF":1.7,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale kinematic growth coupled with mechanosensitive systems biology in open-source software.
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-25 DOI: 10.1115/1.4068290
Steven A LaBelle, Mohammadreza Soltany Sadrabadi, Seungik Baek, Mohammad Mofrad, Jeffrey A Weiss, Amirhossein Arzani
{"title":"Multiscale kinematic growth coupled with mechanosensitive systems biology in open-source software.","authors":"Steven A LaBelle, Mohammadreza Soltany Sadrabadi, Seungik Baek, Mohammad Mofrad, Jeffrey A Weiss, Amirhossein Arzani","doi":"10.1115/1.4068290","DOIUrl":"https://doi.org/10.1115/1.4068290","url":null,"abstract":"<p><p>Multiscale coupling between cell scale biology and tissue-scale mechanics is a promising approach for modeling disease growth. In such models, tissue-level growth and remodeling (G&R) is driven by cell-level signaling pathways and systems biology models, where each model operates at different scales. Herein, we generate multiscale G&R models to capture the associated multiscale connections. At the cell-scale, we consider systems biology models in the form of systems of ordinary differential equations (ODEs) and partial differential equations (PDEs) representing the reactions between the biochemicals causing the growth based on mass-action or logic-based Hill-type kinetics. At the tissue-scale, we employ kinematic growth in continuum frameworks. Two illustrative test problems (a tissue graft and aneurysm growth) are examined with various chemical signaling networks, boundary conditions, and mechano-chemical coupling strategies. We extend two open-source software frameworks - FEBio and FEniCS - to disseminate examples of multiscale growth and remodeling simulations. One-way and two-way coupling between the systems biology and the growth models are compared and the effect of biochemical diffusivity and ODE vs. PDE based systems biology modeling on the G&R results are studied. The results show that growth patterns emerge from reactions between biochemicals, the choice between ODEs and PDEs systems biology modeling, and the coupling strategy. Cross-verification confirms that results for FEBio and FEniCS are nearly identical. We hope that these open-source tools will support reproducibility and education within the biomechanics community.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-53"},"PeriodicalIF":1.7,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143702358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Radial Variations in Biochemical Concentrations in Collagen Type and Water on Mechanical Stability of Annulus Fibrosus' Collagen-Hyaluronan Interfaces at Nanoscale: A Molecular Dynamics Investigation. 胶原类型和水的生化浓度径向变化对纳米尺度纤维环胶原-透明质酸界面机械稳定性的影响:分子动力学研究。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-22 DOI: 10.1115/1.4068261
Shambo Bhattacharya, Devendra Kumar Dubey
{"title":"Influence of Radial Variations in Biochemical Concentrations in Collagen Type and Water on Mechanical Stability of Annulus Fibrosus' Collagen-Hyaluronan Interfaces at Nanoscale: A Molecular Dynamics Investigation.","authors":"Shambo Bhattacharya, Devendra Kumar Dubey","doi":"10.1115/1.4068261","DOIUrl":"https://doi.org/10.1115/1.4068261","url":null,"abstract":"<p><p>Multidirectional load transmission ability by Annulus Fibrosus (AF) require substantial mechanical stability. Additionally, AF exhibits a unique biochemical concentration gradient with outer AF (OA) dominated by type I collagen (COL-I) and inner AF dominated by type II collagen (COL-II) with higher water and proteoglycan concentration. This indicates an intricate relationship between biochemistry and mechanical stability, which remains unclear. This study uses molecular dynamics simulations to investigate the impact of water, COL-I and COL-II, concentration gradients on mechanical stability of AF's Collagen-Hyaluronan nanointerfaces during tensile and compressive deformation. For this, COL-HYL atomistic models are created by increasing COL-II concentrations from 0% to 75%, and water from 65% to 75%. Additional simulation is conducted by increasing water concentration of COL-I-HYL interface (0% COL-II) to 75% to segregate water concentration variation effects. Results show increasing water concentration to 75% results in marginal changes in local hydration indicating increase in bulk water. This enhances HYL and COL segment sliding - leading to reduction in mechanical stability in tension, indicated by drop in stress-strain characteristics. Additionally, increase in bulk water shifts load bearing characteristics towards water - leading to reduction in modulus from 3.7 GPa to 1.9 GPa. Conversely, increasing COL-II and water concentration facilitates stable water bridge formation which impede sliding in HYL and COL - enhancing mechanical stability. These water bridges improve compressive load sustenance leading to lower reduction in compressive modulus from 3.7 GPa to 2.8 GPa.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-26"},"PeriodicalIF":1.7,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modular, mechanical knee model for the development and validation of robotic testing methodologies.
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-22 DOI: 10.1115/1.4068262
Lesley Arant, Jabneel Cardona-Perez, Joshua Roth
{"title":"A modular, mechanical knee model for the development and validation of robotic testing methodologies.","authors":"Lesley Arant, Jabneel Cardona-Perez, Joshua Roth","doi":"10.1115/1.4068262","DOIUrl":"https://doi.org/10.1115/1.4068262","url":null,"abstract":"<p><p>Six-degree-of-freedom robotic testing is used to gain insight into knee function by measuring the biomechanics of cadaveric knees. However, it can be challenging to use cadaveric knees to validate robotic testing methodologies and to compare methodologies across laboratories because cadavers have variable properties and require lengthy preparation. Therefore, our primary objective was to develop a modular, mechanical knee model for robotic testing with comparable biomechanics to those of human cadaveric knees. A secondary objective was to use the knee model to benchmark the errors in ligament tensions measured using the superposition method, which is a common robotic testing workflow to determine in situ ligament tensions. We designed a knee model consisting of femur and tibia components that are constrained by their articular geometries and by ligament phantoms. We used our robotic testing system to measure the kinetic-kinematic relationships under anterior-posterior, varus-valgus, and internal-external loading in four knee models with different design features. We achieved variable kinetic-kinematic relationships across the knee models by adding secondary restraints, altering the engagement of the ligament phantoms, and incorporating osteoarthritic features. The knee models had comparable laxities to cadaveric knees, although most knee models did not capture the flexion-dependent kinematics of cadaveric knees. We also found comparable errors in superposition-computed tensions in the lateral collateral ligament between the knee models and cadaveric knees. Therefore, the knee model is a biomechanically representative specimen that can be a valuable tool for developing and validating robotic testing methodologies.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-30"},"PeriodicalIF":1.7,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lobar Sliding Reduces Parenchymal Distortion More in the Right Lung than the Left Lung.
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-21 DOI: 10.1115/1.4068237
Adam E Galloy, Joseph M Reinhardt, Madhavan L Raghavan
{"title":"Lobar Sliding Reduces Parenchymal Distortion More in the Right Lung than the Left Lung.","authors":"Adam E Galloy, Joseph M Reinhardt, Madhavan L Raghavan","doi":"10.1115/1.4068237","DOIUrl":"https://doi.org/10.1115/1.4068237","url":null,"abstract":"<p><p>Interlobar sliding has long been suspected to help the lungs adapt to changes in thoracic cavity shape by reducing parenchymal distortion. Our previous controlled computational experiment tested the hypothesis that lung lobar sliding reduces parenchymal distortion during breathing, but only the left lung was studied. The goal of this study was to extend this analysis to the right lung which has three lobes and two fissures compared to the left lung?s two lobes and single fissure. Finite elastic contact mechanics models of the right lung were used to perform paired subject-specific simulations of lung deformation with and without lobar sliding from end inhale to end exhale at both tidal breathing volumes (n = 8) and breath hold volumes near total lung capacity and functional residual capacity (n = 6). Consistent with the hypothesis, we found that parenchymal distortion, quantified with the spatial mean of the anisotropic deformation index throughout each lung model, was lesser in the models with lobar sliding than their non-sliding counterparts (p = 0.008, 13% median difference for tidal breathing and p = 0.03, 19.6% median difference for breath holds). This effect was several times larger than was previously observed in the left lung (p = 0.008, 5.3% median difference for tidal breathing and p = 0.03, 3.2% median difference for breath holds), likely due to the greater number of sliding interfaces in the right lung than the left which better allow the right lung to adapt to the thoracic cavity.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-15"},"PeriodicalIF":1.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Rigidity Control for Supportive Sheaths in Endovascular Procedures.
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-17 DOI: 10.1115/1.4068225
Michael Qiu, Vinay Chandrasekaran, Chase Hartquist, Halle Lowe, Charles Suskin, Sheridan Lee, Juan Becerra-Garcia, Jin Vivian Lee, DeVaughn Rucker, Michelle Connor, Sophia R Pyeatte, Mohamed Zaghloul, Santiago Elizondo Benedetto, Eric Leuthardt, Mohamed Zayed, Josh Osbun, Guy Genin
{"title":"Dynamic Rigidity Control for Supportive Sheaths in Endovascular Procedures.","authors":"Michael Qiu, Vinay Chandrasekaran, Chase Hartquist, Halle Lowe, Charles Suskin, Sheridan Lee, Juan Becerra-Garcia, Jin Vivian Lee, DeVaughn Rucker, Michelle Connor, Sophia R Pyeatte, Mohamed Zaghloul, Santiago Elizondo Benedetto, Eric Leuthardt, Mohamed Zayed, Josh Osbun, Guy Genin","doi":"10.1115/1.4068225","DOIUrl":"https://doi.org/10.1115/1.4068225","url":null,"abstract":"<p><p>Endovascular procedures require sheaths with contradictory mechanical properties: flexibility for navigation through tortuous vessels, yet rigidity for device delivery. Current approaches rely on multiple device exchanges, increasing procedure time and complication risks. Here we present a novel endovascular sheath design scheme with dynamically controllable flexural rigidity along its entire length. The device incorporates axially aligned metal string arrays between inner and outer lumens, enabling transition between flexible and rigid states through suction actuation. Three-point bend testing demonstrated that actuation increases flexural rigidity from the range associated with diagnostic catheters to that associated with support sheaths. In simulated contralateral access procedures, the device reduced access time to 1/3 of the time required when using conventional approaches. In vivo porcine studies validated the sheath?s ability to navigate tortuous anatomy in its flexible state and successfully support advancement of increasingly rigid therapeutic devices when actuated. The technology enables single-sheath delivery of treatment, potentially reducing procedural complexity, decreasing complication rates, and improving patient outcomes across various endovascular interventions. This design represents a promising approach to combined catheter and sheath design that benefit both peripheral and neurovascular procedures.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-19"},"PeriodicalIF":1.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benefits of Using Functional Joint Coordinate Systems in In Vitro Knee Testing. 在体外膝关节测试中使用功能性关节坐标系统的好处。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-01-22 DOI: 10.1115/1.4067700
Tara Nagle, Jeremy G Loss, Robb Colbrunn
{"title":"Benefits of Using Functional Joint Coordinate Systems in In Vitro Knee Testing.","authors":"Tara Nagle, Jeremy G Loss, Robb Colbrunn","doi":"10.1115/1.4067700","DOIUrl":"https://doi.org/10.1115/1.4067700","url":null,"abstract":"<p><p>To measure knee joint kinematics, coordinate systems (CS) must be assigned to the tibia and femur. Functional CS have been shown to be more reproducible than Anatomical. This study aims to quantify the benefits of using Functional CS in in vitro testing. Seven cadaveric knee joints were loaded in a 6-Degree of Freedom (DOF) joint simulator. Anatomical CS were established for each joint and Functional CS were calculated based on joint kinematics during passive motion. Loading profiles were applied to the knee joints using different CS definitions. Resulting kinematics and kinetics were obtained to quantify the 1) reduction in intra-knee kinematic response variation, 2) reduction in kinematic cross-talk, 3) reduction in inter-knee kinematic response variation, and 4) improvement in force control performance, when using Functional CS compared to Anatomical. Functional CS, compared to Anatomical, 1) significantly reduced intra-knee kinematic response variation across 12 combined loading conditions for nearly all DOF, 2) significantly reduced kinematic cross-talk during anterior-posterior, varus-valgus and internal-external rotation laxity testing across many DOF, 3) significantly reduced inter-knee kinematic response variation for all DOFs over a gait profile and combined loading conditions, and 4) significantly improved Anterior-Posterior and Varus-Valgus force/torque control performance during dynamic loading profiles. The advantage of using Functional CS for in vitro testing has been demonstrated across all considered domains. Functional CS should be used when performing in vitro knee joint testing.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-32"},"PeriodicalIF":1.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-Based Estimation of Left Ventricular Myocardial Stiffness. 基于图像的左心室心肌僵硬度估计
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-01-01 DOI: 10.1115/1.4066525
Tarek Shazly, Logan Eads, Mia Kazel, Francesco K Yigamawano, Juliana Guest, Traci L Jones, Ahmed A Alshareef, Kurt G Barringhaus, Francis G Spinale
{"title":"Image-Based Estimation of Left Ventricular Myocardial Stiffness.","authors":"Tarek Shazly, Logan Eads, Mia Kazel, Francesco K Yigamawano, Juliana Guest, Traci L Jones, Ahmed A Alshareef, Kurt G Barringhaus, Francis G Spinale","doi":"10.1115/1.4066525","DOIUrl":"10.1115/1.4066525","url":null,"abstract":"<p><p>Elevation in left ventricular (LV) myocardial stiffness is a key remodeling-mediated change that underlies the development and progression of heart failure (HF). Despite the potential diagnostic value of quantifying this deterministic change, there is a lack of enabling techniques that can be readily incorporated into current clinical practice. To address this unmet clinical need, we propose a simple protocol for processing routine echocardiographic imaging data to provide an index of left ventricular myocardial stiffness, with protocol specification for patients at risk for heart failure with preserved ejection fraction. We demonstrate our protocol in both a preclinical and clinical setting, with representative findings that suggest sensitivity and translational feasibility of obtained estimates.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信