Journal of Biomechanical Engineering-Transactions of the Asme最新文献

筛选
英文 中文
A modular, mechanical knee model for the development and validation of robotic testing methodologies. 一个模块化的机械膝关节模型,用于开发和验证机器人测试方法。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-22 DOI: 10.1115/1.4068262
Lesley Arant, Jabneel Cardona-Perez, Joshua Roth
{"title":"A modular, mechanical knee model for the development and validation of robotic testing methodologies.","authors":"Lesley Arant, Jabneel Cardona-Perez, Joshua Roth","doi":"10.1115/1.4068262","DOIUrl":"https://doi.org/10.1115/1.4068262","url":null,"abstract":"<p><p>Six-degree-of-freedom robotic testing is used to gain insight into knee function by measuring the biomechanics of cadaveric knees. However, it can be challenging to use cadaveric knees to validate robotic testing methodologies and to compare methodologies across laboratories because cadavers have variable properties and require lengthy preparation. Therefore, our primary objective was to develop a modular, mechanical knee model for robotic testing with comparable biomechanics to those of human cadaveric knees. A secondary objective was to use the knee model to benchmark the errors in ligament tensions measured using the superposition method, which is a common robotic testing workflow to determine in situ ligament tensions. We designed a knee model consisting of femur and tibia components that are constrained by their articular geometries and by ligament phantoms. We used our robotic testing system to measure the kinetic-kinematic relationships under anterior-posterior, varus-valgus, and internal-external loading in four knee models with different design features. We achieved variable kinetic-kinematic relationships across the knee models by adding secondary restraints, altering the engagement of the ligament phantoms, and incorporating osteoarthritic features. The knee models had comparable laxities to cadaveric knees, although most knee models did not capture the flexion-dependent kinematics of cadaveric knees. We also found comparable errors in superposition-computed tensions in the lateral collateral ligament between the knee models and cadaveric knees. Therefore, the knee model is a biomechanically representative specimen that can be a valuable tool for developing and validating robotic testing methodologies.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-30"},"PeriodicalIF":1.7,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lobar Sliding Reduces Parenchymal Distortion More in the Right Lung than the Left Lung. 肺叶滑动对右肺实质畸变的影响大于左肺。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-21 DOI: 10.1115/1.4068237
Adam E Galloy, Joseph M Reinhardt, Madhavan L Raghavan
{"title":"Lobar Sliding Reduces Parenchymal Distortion More in the Right Lung than the Left Lung.","authors":"Adam E Galloy, Joseph M Reinhardt, Madhavan L Raghavan","doi":"10.1115/1.4068237","DOIUrl":"https://doi.org/10.1115/1.4068237","url":null,"abstract":"<p><p>Interlobar sliding has long been suspected to help the lungs adapt to changes in thoracic cavity shape by reducing parenchymal distortion. Our previous controlled computational experiment tested the hypothesis that lung lobar sliding reduces parenchymal distortion during breathing, but only the left lung was studied. The goal of this study was to extend this analysis to the right lung which has three lobes and two fissures compared to the left lung?s two lobes and single fissure. Finite elastic contact mechanics models of the right lung were used to perform paired subject-specific simulations of lung deformation with and without lobar sliding from end inhale to end exhale at both tidal breathing volumes (n = 8) and breath hold volumes near total lung capacity and functional residual capacity (n = 6). Consistent with the hypothesis, we found that parenchymal distortion, quantified with the spatial mean of the anisotropic deformation index throughout each lung model, was lesser in the models with lobar sliding than their non-sliding counterparts (p = 0.008, 13% median difference for tidal breathing and p = 0.03, 19.6% median difference for breath holds). This effect was several times larger than was previously observed in the left lung (p = 0.008, 5.3% median difference for tidal breathing and p = 0.03, 3.2% median difference for breath holds), likely due to the greater number of sliding interfaces in the right lung than the left which better allow the right lung to adapt to the thoracic cavity.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-15"},"PeriodicalIF":1.7,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Rigidity Control for Supportive Sheaths in Endovascular Procedures. 血管内手术中支持鞘的动态刚度控制。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-03-17 DOI: 10.1115/1.4068225
Michael Qiu, Vinay Chandrasekaran, Chase Hartquist, Halle Lowe, Charles Suskin, Sheridan Lee, Juan Becerra-Garcia, Jin Vivian Lee, DeVaughn Rucker, Michelle Connor, Sophia R Pyeatte, Mohamed Zaghloul, Santiago Elizondo Benedetto, Eric Leuthardt, Mohamed Zayed, Josh Osbun, Guy Genin
{"title":"Dynamic Rigidity Control for Supportive Sheaths in Endovascular Procedures.","authors":"Michael Qiu, Vinay Chandrasekaran, Chase Hartquist, Halle Lowe, Charles Suskin, Sheridan Lee, Juan Becerra-Garcia, Jin Vivian Lee, DeVaughn Rucker, Michelle Connor, Sophia R Pyeatte, Mohamed Zaghloul, Santiago Elizondo Benedetto, Eric Leuthardt, Mohamed Zayed, Josh Osbun, Guy Genin","doi":"10.1115/1.4068225","DOIUrl":"https://doi.org/10.1115/1.4068225","url":null,"abstract":"<p><p>Endovascular procedures require sheaths with contradictory mechanical properties: flexibility for navigation through tortuous vessels, yet rigidity for device delivery. Current approaches rely on multiple device exchanges, increasing procedure time and complication risks. Here we present a novel endovascular sheath design scheme with dynamically controllable flexural rigidity along its entire length. The device incorporates axially aligned metal string arrays between inner and outer lumens, enabling transition between flexible and rigid states through suction actuation. Three-point bend testing demonstrated that actuation increases flexural rigidity from the range associated with diagnostic catheters to that associated with support sheaths. In simulated contralateral access procedures, the device reduced access time to 1/3 of the time required when using conventional approaches. In vivo porcine studies validated the sheath?s ability to navigate tortuous anatomy in its flexible state and successfully support advancement of increasingly rigid therapeutic devices when actuated. The technology enables single-sheath delivery of treatment, potentially reducing procedural complexity, decreasing complication rates, and improving patient outcomes across various endovascular interventions. This design represents a promising approach to combined catheter and sheath design that benefit both peripheral and neurovascular procedures.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-19"},"PeriodicalIF":1.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benefits of Using Functional Joint Coordinate Systems in In Vitro Knee Testing. 在体外膝关节测试中使用功能性关节坐标系统的好处。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-01-22 DOI: 10.1115/1.4067700
Tara Nagle, Jeremy G Loss, Robb Colbrunn
{"title":"Benefits of Using Functional Joint Coordinate Systems in In Vitro Knee Testing.","authors":"Tara Nagle, Jeremy G Loss, Robb Colbrunn","doi":"10.1115/1.4067700","DOIUrl":"https://doi.org/10.1115/1.4067700","url":null,"abstract":"<p><p>To measure knee joint kinematics, coordinate systems (CS) must be assigned to the tibia and femur. Functional CS have been shown to be more reproducible than Anatomical. This study aims to quantify the benefits of using Functional CS in in vitro testing. Seven cadaveric knee joints were loaded in a 6-Degree of Freedom (DOF) joint simulator. Anatomical CS were established for each joint and Functional CS were calculated based on joint kinematics during passive motion. Loading profiles were applied to the knee joints using different CS definitions. Resulting kinematics and kinetics were obtained to quantify the 1) reduction in intra-knee kinematic response variation, 2) reduction in kinematic cross-talk, 3) reduction in inter-knee kinematic response variation, and 4) improvement in force control performance, when using Functional CS compared to Anatomical. Functional CS, compared to Anatomical, 1) significantly reduced intra-knee kinematic response variation across 12 combined loading conditions for nearly all DOF, 2) significantly reduced kinematic cross-talk during anterior-posterior, varus-valgus and internal-external rotation laxity testing across many DOF, 3) significantly reduced inter-knee kinematic response variation for all DOFs over a gait profile and combined loading conditions, and 4) significantly improved Anterior-Posterior and Varus-Valgus force/torque control performance during dynamic loading profiles. The advantage of using Functional CS for in vitro testing has been demonstrated across all considered domains. Functional CS should be used when performing in vitro knee joint testing.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-32"},"PeriodicalIF":1.7,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-Based Estimation of Left Ventricular Myocardial Stiffness. 基于图像的左心室心肌僵硬度估计
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2025-01-01 DOI: 10.1115/1.4066525
Tarek Shazly, Logan Eads, Mia Kazel, Francesco K Yigamawano, Juliana Guest, Traci L Jones, Ahmed A Alshareef, Kurt G Barringhaus, Francis G Spinale
{"title":"Image-Based Estimation of Left Ventricular Myocardial Stiffness.","authors":"Tarek Shazly, Logan Eads, Mia Kazel, Francesco K Yigamawano, Juliana Guest, Traci L Jones, Ahmed A Alshareef, Kurt G Barringhaus, Francis G Spinale","doi":"10.1115/1.4066525","DOIUrl":"10.1115/1.4066525","url":null,"abstract":"<p><p>Elevation in left ventricular (LV) myocardial stiffness is a key remodeling-mediated change that underlies the development and progression of heart failure (HF). Despite the potential diagnostic value of quantifying this deterministic change, there is a lack of enabling techniques that can be readily incorporated into current clinical practice. To address this unmet clinical need, we propose a simple protocol for processing routine echocardiographic imaging data to provide an index of left ventricular myocardial stiffness, with protocol specification for patients at risk for heart failure with preserved ejection fraction. We demonstrate our protocol in both a preclinical and clinical setting, with representative findings that suggest sensitivity and translational feasibility of obtained estimates.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
We Will, We Will Shock You: Adaptive Versus Conventional Functional Electrical Stimulation in Individuals Post-Stroke. 我们会,我们会让你震惊:中风后患者的自适应功能性电刺激与传统功能性电刺激。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-12-01 DOI: 10.1115/1.4066419
Margo C Donlin, Jill S Higginson
{"title":"We Will, We Will Shock You: Adaptive Versus Conventional Functional Electrical Stimulation in Individuals Post-Stroke.","authors":"Margo C Donlin, Jill S Higginson","doi":"10.1115/1.4066419","DOIUrl":"10.1115/1.4066419","url":null,"abstract":"<p><p>Functional electrical stimulation (FES) is often used in poststroke gait rehabilitation to address decreased walking speed, foot drop, and decreased forward propulsion. However, not all individuals experience clinically meaningful improvements in gait function with stimulation. Previous research has developed adaptive functional electrical stimulation (AFES) systems that adjust stimulation timing and amplitude at every stride to deliver optimal stimulation. The purpose of this work was to determine the effects of a novel AFES system on functional gait outcomes and compare them to the effects of the existing FES system. Twenty-four individuals with chronic poststroke hemiparesis completed 64-min walking trials on an adaptive and fixed-speed treadmill with no stimulation, stimulation from the existing FES system, and stimulation from the AFES system. There was no significant effect of stimulation condition on walking speed, peak dorsiflexion angle, or peak propulsive force. Walking speed was significantly faster and peak propulsive force was significantly larger on the adaptive treadmill (ATM) than the fixed-speed treadmill (both p < 0.0001). Dorsiflexor stimulation timing was similar between stimulation conditions, but plantarflexor stimulation timing was significantly improved with the AFES system compared to the FES system (p = 0.0059). Variability between and within subjects was substantial, and some subjects experienced clinically meaningful improvements in walking speed, peak dorsiflexion angle, and peak propulsive force. However, not all subjects experienced benefits, suggesting that further research to characterize which subjects exhibit the best instantaneous response to FES is needed to optimize poststroke gait rehabilitation using FES.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500808/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin. 管周牙本质和管间牙本质界面裂缝穿透和变形的数值研究
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-12-01 DOI: 10.1115/1.4066286
Min Xu, Zhangying Xu, Bingbing An
{"title":"A Numerical Study of Crack Penetration and Deflection at the Interface Between Peritubular and Intertubular Dentin.","authors":"Min Xu, Zhangying Xu, Bingbing An","doi":"10.1115/1.4066286","DOIUrl":"10.1115/1.4066286","url":null,"abstract":"<p><p>Dentin is a biological composite exhibiting multilevel hierarchical structure, which confers excellent damage tolerance to this tissue. Despite the progress in characterization of fracture behavior of dentin, the contribution of composite structure consisting of peritubular dentin (PTD), intertubular dentin (ITD) and tubules to fracture resistance remains elusive. In this study, calculations are carried out for energy release rate associated with crack propagation in the microstructure of dentin. Crack penetration and deflection at the PTD-ITD interface are accounted for in the numerical analyses. It is found that high stiffness of the PTD plays a role in increasing crack driving force, promoting crack growth in the microstructure of dentin. For crack penetration across the PTD-ITD interface, the crack driving force increases with increasing tubule radius; and thick PTD generates amplified crack driving force, thereby leading to weak fracture resistance. The driving force for crack deflection increases with the increase in tubule radius in the case of short cracks, while for long cracks, there is a decrease in driving force with increasing tubule radius. Furthermore, we show that the competition between crack penetration and deflection at the PTD-ITD interface is controlled by the ratio of PTD to ITD elastic modulus, tubule radius and thickness of PTD. High PTD stiffness can increase the propensity of crack deflection. The microstructure of dentin with large tubule radius favors crack deflection and thick PTD is beneficial for crack penetration.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vivo Quantification of Ascending Thoracic Aortic Aneurysm Wall Stretch Using MRI: Relationship to Repair Threshold Diameter and Ex Vivo Wall Failure Behavior. 利用核磁共振成像对升胸主动脉瘤壁拉伸进行体内定量:与修复阈值直径和体内壁破坏行为的关系
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-12-01 DOI: 10.1115/1.4066430
Huiming Dong, Henrik Haraldsson, Joseph Leach, Ang Zhou, Megan Ballweber, Chengcheng Zhu, Yue Xuan, Zhongjie Wang, Michael Hope, Frederick H Epstein, Liang Ge, David Saloner, Elaine Tseng, Dimitrios Mitsouras
{"title":"In Vivo Quantification of Ascending Thoracic Aortic Aneurysm Wall Stretch Using MRI: Relationship to Repair Threshold Diameter and Ex Vivo Wall Failure Behavior.","authors":"Huiming Dong, Henrik Haraldsson, Joseph Leach, Ang Zhou, Megan Ballweber, Chengcheng Zhu, Yue Xuan, Zhongjie Wang, Michael Hope, Frederick H Epstein, Liang Ge, David Saloner, Elaine Tseng, Dimitrios Mitsouras","doi":"10.1115/1.4066430","DOIUrl":"10.1115/1.4066430","url":null,"abstract":"<p><p>Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating the Growth of TATA-Box Binding Protein-Associated Factor 15 Inclusions in Neuron Soma. 模拟神经元索质中 TAF15 包涵体的生长
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-12-01 DOI: 10.1115/1.4066386
Andrey V Kuznetsov
{"title":"Simulating the Growth of TATA-Box Binding Protein-Associated Factor 15 Inclusions in Neuron Soma.","authors":"Andrey V Kuznetsov","doi":"10.1115/1.4066386","DOIUrl":"10.1115/1.4066386","url":null,"abstract":"<p><p>To the best of the author's knowledge, this paper presents the first attempt to develop a mathematical model of the formation and growth of inclusions containing misfolded TATA-box binding protein associated factor 15 (TAF15). It has recently been shown that TAF15 inclusions are involved in approximately 10% of cases of frontotemporal lobar degeneration (FTLD). FTLD is the second most common neurodegenerative disease after Alzheimer's disease (AD). It is characterized by a progressive loss of personality, behavioral changes, and a decline in language skills due to the degeneration of the frontal and anterior temporal lobes. The model simulates TAF15 monomer production, nucleation and autocatalytic growth of free TAF15 aggregates, and their deposition into TAF15 inclusions. The accuracy of the numerical solution of the model equations is validated by comparing it with analytical solutions available for limiting cases. Physiologically relevant parameter values were used to predict TAF15 inclusion growth. It is shown that the growth of TAF15 inclusions is influenced by two opposing mechanisms: the rate at which free TAF15 aggregates are deposited into inclusions and the rate of autocatalytic production of free TAF15 aggregates from monomers. A low deposition rate slows inclusion growth, while a high deposition rate hinders the autocatalytic production of new aggregates, thus also slowing inclusion growth. Consequently, the rate of inclusion growth is maximized at an intermediate deposition rate of free TAF15 aggregates into TAF15 inclusions.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of an Inverse Method for Quantifying Spatially Variable Mechanics. 评估用于量化空间可变力学的逆方法。
IF 1.7 4区 医学
Journal of Biomechanical Engineering-Transactions of the Asme Pub Date : 2024-12-01 DOI: 10.1115/1.4066434
Daniel P Pearce, Colleen M Witzenburg
{"title":"Evaluation of an Inverse Method for Quantifying Spatially Variable Mechanics.","authors":"Daniel P Pearce, Colleen M Witzenburg","doi":"10.1115/1.4066434","DOIUrl":"10.1115/1.4066434","url":null,"abstract":"<p><p>Soft biological tissues often function as highly deformable membranes in vivo and exhibit impressive mechanical behavior effectively characterized by planar biaxial testing. The Generalized Anisotropic Inverse Mechanics (GAIM) method links full-field deformations and boundary forces from mechanical testing to quantify material properties of soft, anisotropic, heterogeneous tissues. In this study, we introduced an orthotropic constraint to GAIM to improve the quality and physical significance of its mechanical characterizations. We evaluated the updated GAIM method using simulated and experimental biaxial testing datasets obtained from soft tissue analogs (PDMS and TissueMend) with well-defined mechanical properties. GAIM produced stiffnesses (first Kelvin moduli, K1) that agreed well with previously published Young's moduli of PDMS samples. It also matched the stiffness moduli determined via uniaxial testing for TissueMend, a collagen-rich patch intended for tendon repair. We then conducted the first biaxial testing of TissueMend and confirmed that the sample was mechanically anisotropic via a relative anisotropy metric produced by GAIM. Next, we demonstrated the benefits of full-field laser micrometry in distinguishing between spatial variations in thickness and stiffness. Finally, we conducted an analysis to verify that results were independent of partitioning scheme. The success of the newly implemented constraints on GAIM suggests notable potential for applying this tool to soft tissues, particularly following the onset of pathologies that induce mechanical and structural heterogeneities.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信