Integrating imaging and invasive pressure data into a multi-scale whole-heart model.

IF 1.7 4区 医学 Q4 BIOPHYSICS
Marina Strocchi, Christoph M Augustin, Matthias A F Gsell, Christopher A Rinaldi, Edward J Vigmond, Gernot Plank, Chris J Oates, Richard D Wilkinson, Steven A Niederer
{"title":"Integrating imaging and invasive pressure data into a multi-scale whole-heart model.","authors":"Marina Strocchi, Christoph M Augustin, Matthias A F Gsell, Christopher A Rinaldi, Edward J Vigmond, Gernot Plank, Chris J Oates, Richard D Wilkinson, Steven A Niederer","doi":"10.1115/1.4069497","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are the leading cause of death. Clinical data used to decide treatment are hard to integrate and interpret, making optimal treatment selection difficult. Personalised models can be used to integrate clinical data into a physics and physiology-constrained framework, but their clinical application faces limitations due to complex calibration and validation. In this study, we present a novel systematic calibration method for a whole-heart, multi-scale, electromechanics model using emulators, sensitivity analysis and history matching. Using cardiac motion derived from ECG-gated computed tomography (CT) and invasive left ventricular (LV) pressure data, we calibrated 25 model parameters to match the LV end-diastolic (ED) and peak pressure, ED and end-systolic (ES) volumes (EDV and ESV), right ventricle EDV, and the left atrium EDV, ESV and the maximum volume during venous return. After calibration, all features were fit within [0.8, 10.8]% of the mean target value, and fell within 1.4 experimental standard deviations from the target values. We validated the model by comparing CT-derived and simulated atrioventricular plane displacement (8.2 vs 8.1mm) and the ED and ES configurations against the CT images. The model replicated the measured acute haemodynamic response to biventricular pacing (simulated: 222mmHg/s vs clinical: 213+/-65mmHg/s). This study provides a systematic method to integrate clinical data into a whole-heart, multiscale electromechanics framework. The validation shows that the model replicates local heart motion and response to therapy, demonstrating potential in assisting clinical decision-making.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-52"},"PeriodicalIF":1.7000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4069497","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases are the leading cause of death. Clinical data used to decide treatment are hard to integrate and interpret, making optimal treatment selection difficult. Personalised models can be used to integrate clinical data into a physics and physiology-constrained framework, but their clinical application faces limitations due to complex calibration and validation. In this study, we present a novel systematic calibration method for a whole-heart, multi-scale, electromechanics model using emulators, sensitivity analysis and history matching. Using cardiac motion derived from ECG-gated computed tomography (CT) and invasive left ventricular (LV) pressure data, we calibrated 25 model parameters to match the LV end-diastolic (ED) and peak pressure, ED and end-systolic (ES) volumes (EDV and ESV), right ventricle EDV, and the left atrium EDV, ESV and the maximum volume during venous return. After calibration, all features were fit within [0.8, 10.8]% of the mean target value, and fell within 1.4 experimental standard deviations from the target values. We validated the model by comparing CT-derived and simulated atrioventricular plane displacement (8.2 vs 8.1mm) and the ED and ES configurations against the CT images. The model replicated the measured acute haemodynamic response to biventricular pacing (simulated: 222mmHg/s vs clinical: 213+/-65mmHg/s). This study provides a systematic method to integrate clinical data into a whole-heart, multiscale electromechanics framework. The validation shows that the model replicates local heart motion and response to therapy, demonstrating potential in assisting clinical decision-making.

将成像和有创压力数据整合到多尺度全心模型中。
心血管疾病是导致死亡的主要原因。用于决定治疗的临床数据难以整合和解释,使最佳治疗选择变得困难。个性化模型可用于将临床数据整合到物理和生理学约束的框架中,但由于复杂的校准和验证,其临床应用面临限制。在这项研究中,我们提出了一种新的系统校准方法,用于全心,多尺度,机电模型,利用模拟器,灵敏度分析和历史匹配。利用心电图门控计算机断层扫描(CT)和有创左室(LV)压力数据得出的心脏运动,我们校准了25个模型参数,以匹配左室舒张末期(ED)和峰值压力、ED和收缩末期(ES)容积(EDV和ESV)、右心室EDV、左心房EDV、ESV和静脉回流时的最大容积。校正后,所有特征拟合在目标值平均值的[0.8,10.8]%范围内,与目标值的实验标准差均在1.4以内。我们通过对比CT导出的和模拟的房室平面位移(8.2 vs 8.1mm)以及ED和ES的配置与CT图像来验证模型。该模型复制了双心室起搏时测量到的急性血流动力学反应(模拟:222mmHg/s,而临床:213+/-65mmHg/s)。本研究提供了一种系统的方法,将临床数据整合到全心脏、多尺度的机电框架中。验证表明,该模型复制了局部心脏运动和对治疗的反应,显示了辅助临床决策的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信