{"title":"Impact Location Dependence of Behind Armor Blunt Trauma Injury Assessed Using a Human Body Finite Element Model.","authors":"Michael C Bustamante, Duane S Cronin","doi":"10.1115/1.4063273","DOIUrl":"10.1115/1.4063273","url":null,"abstract":"<p><p>Behind armor blunt trauma (BABT), resulting from dynamic deformation of protective ballistic armor into the thorax, is currently assessed assuming a constant threshold of maximum backface deformation (BFDs) (44 mm). Although assessed for multiple impacts on the same armor, testing is focused on armor performance (shot-to-edge and shot-to-shot) without consideration of the underlying location on the thorax. Previous studies identified the importance of impacts on organs of animal surrogates wearing soft armor. However, the effect of impact location was not quantified outside the threshold of 44 mm. In the present study, a validated biofidelic advanced human thorax model (50th percentile male) was utilized to assess the BABT outcome from varying impact location. The thorax model was dynamically loaded using a method developed for recreating BABT impacts, and BABT events within the range of real-world impact severities and locations were simulated. It was found that thorax injury depended on impact location for the same BFDs. Generally, impacts over high compliance locations (anterolateral rib cage) yielded increased thoracic compression and loading on the lungs leading to pulmonary lung contusion (PLC). Impacts at low compliance locations (top of sternum) yielded hard tissue fractures. Injuries to the sternum, ribs, and lungs were predicted at BFDs lower than 44 mm for low compliance locations. Location-based injury risk curves demonstrated greater accuracy in injury prediction. This study quantifies the importance of impact location on BABT injury severity and demonstrates the need for consideration of location in future armor design and assessment.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Kinematic Theories and Practices Compiled for Biomechanics Students and Researchers.","authors":"Arthur Erdman, Malachi Lehman","doi":"10.1115/1.4064054","DOIUrl":"10.1115/1.4064054","url":null,"abstract":"<p><p>The topic of kinematics is fundamental to engineering and has a significant bearing on clinical evaluations of human movement. For those studying biomechanics, this topic is often overlooked in importance. The degree to which kinematic fundamentals are included in Biomedical engineering (BmE) curriculums is not consistent across programs and often foundational understandings are gained only after reading literature if a research or development project requires that knowledge. The purpose of this paper is to present the important theories and methods of kinematic analysis and synthesis that should be in the \"toolbox\" of students of biomechanics. Each topic is briefly presented accompanied by an example or two. Deeper learning of each topic is left to the reader, with the help of some sample references to begin that journey.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annie R A King, Jennifer Rovt, Oren E Petel, Bosco Yu, Cheryl E Quenneville
{"title":"Evaluation of an Elastomeric Honeycomb Bicycle Helmet Design to Mitigate Head Kinematics in Oblique Impacts.","authors":"Annie R A King, Jennifer Rovt, Oren E Petel, Bosco Yu, Cheryl E Quenneville","doi":"10.1115/1.4064475","DOIUrl":"10.1115/1.4064475","url":null,"abstract":"<p><p>Head impacts in bicycle accidents are typically oblique to the impact surface and transmit both normal and tangential forces to the head, causing linear and rotational head kinematics, respectively. Traditional expanded polystyrene (EPS) foam bicycle helmets are effective at preventing many head injuries, especially skull fractures and severe traumatic brain injuries (TBIs) (primarily from normal contact forces). However, the incidence of concussion from collisions (primarily from rotational head motion) remains high, indicating need for enhanced protection. An elastomeric honeycomb helmet design is proposed herein as an alternative to EPS foam to improve TBI protection and be potentially reusable for multiple impacts, and tested using a twin-wire drop tower. Small-scale normal and oblique impact tests showed honeycomb had lower oblique strength than EPS foam, beneficial for diffuse TBI protection by permitting greater shear deformation and had the potential to be reusable. Honeycomb helmets were developed based on the geometry of an existing EPS foam helmet, prototypes were three-dimensional-printed with thermoplastic polyurethane and full-scale flat and oblique drop tests were performed. In flat impacts, honeycomb helmets resulted in a 34% higher peak linear acceleration and 7% lower head injury criteria (HIC15) than EPS foam helmets. In oblique tests, honeycomb helmets resulted in a 30% lower HIC15 and 40% lower peak rotational acceleration compared to EPS foam helmets. This new helmet design has the potential to reduce the risk of TBI in a bicycle accident, and as such, reduce its social and economic burden. Also, the honeycomb design showed potential to be effective for repetitive impact events without the need for replacement, offering benefits to consumers.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the Suitability of an Effective Viscosity to Represent Interactions Between Red Blood Cells in Shear Flow.","authors":"Grant Rydquist, Mahdi Esmaily","doi":"10.1115/1.4064213","DOIUrl":"10.1115/1.4064213","url":null,"abstract":"<p><p>Many methods to computationally predict red blood cell damage have been introduced, and among these are Lagrangian methods that track the cells along their pathlines. Such methods typically do not explicitly include cell-cell interactions. Due to the high volume fraction of red blood cells (RBCs) in blood, these interactions could impact cell mechanics and thus the amount of damage caused by the flow. To investigate this question, cell-resolved simulations of red blood cells in shear flow were performed for multiple interacting cells, as well as for single cells in unbounded flow at an effective viscosity. Simulations run without adjusting the bulk viscosity produced larger errors unilaterally and were not considered further for comparison. We show that a periodic box containing at least 8 cells and a spherical harmonic of degree larger than 10 are necessary to produce converged higher-order statistics. The maximum difference between the single-cell and multiple-cell cases in terms of peak strain was 3.7%. To achieve this, one must use the whole blood viscosity and average over multiple cell orientations when adopting a single-cell simulation approach. The differences between the models in terms of average strain were slightly larger (maximum difference of 6.9%). However, given the accuracy of the single-cell approach in predicting the maximum strain, which is useful in hemolysis prediction, and its computational cost that is orders of magnitude less than the multiple-cell approach, one may use it as an affordable cell-resolved approach for hemolysis prediction.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":"146 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138813223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Layer-Specific Properties of the Human Infra-Renal Aorta During Aging Considering Pre/Post-Failure Damage.","authors":"Dimitrios P Sokolis","doi":"10.1115/1.4064146","DOIUrl":"10.1115/1.4064146","url":null,"abstract":"<p><p>There is little information on the layer-specific failure properties of the adult human abdominal aorta, and there has been no quantification of postfailure damage. Infra-renal aortas were thus taken from forty-seven autopsy subjects and cut into 870 intact-wall and layer strips that underwent uni-axial-tensile testing. Intact-wall failure stress did not differ significantly (p > 0.05) from the medial value longitudinally, nor from the intimal and medial values circumferentially, which were the lowest recorded values. Intact-wall failure stretch did not differ (p > 0.05) from the medial value in either direction. Intact-wall prefailure stretch (defined as failure stretch-stretch at the initiation of the concave phase of the stress-stretch response) did not differ (p > 0.05) from the intimal and medial values, and intact-wall postfailure stretch (viz., full-rupture stretch-failure stretch) did not differ (p > 0.05) from the adventitial value since the adventitia was the last layer to rupture, being most extensible albeit under residual tension. Intact-wall failure stress and stretch declined from 20 to 60 years, explained by steady declines throughout the lifetime of their medial counterparts, implicating beyond 60 years the less age-varying failure properties of the intima under minimal residual compression. The positive correlation of postfailure stretch with age counteracted the declining failure stretch, serving as a compensatory mechanism against rupture. Hypertension, diabetes, and coronary artery disease adversely affected the intact-wall and layer-specific failure stretches while increasing stiffness.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maximillian T Diaz, Joel B Harley, Jennifer A Nichols
{"title":"Sensitivity Analysis of Upper Limb Musculoskeletal Models During Isometric and Isokinetic Tasks.","authors":"Maximillian T Diaz, Joel B Harley, Jennifer A Nichols","doi":"10.1115/1.4064056","DOIUrl":"10.1115/1.4064056","url":null,"abstract":"<p><p>Sensitivity coefficients are used to understand how errors in subject-specific musculoskeletal model parameters influence model predictions. Previous sensitivity studies in the lower limb calculated sensitivity using perturbations that do not fully represent the diversity of the population. Hence, the present study performs sensitivity analysis in the upper limb using a large synthetic dataset to capture greater physiological diversity. The large dataset (n = 401 synthetic subjects) was created by adjusting maximum isometric force, optimal fiber length, pennation angle, and bone mass to induce atrophy, hypertrophy, osteoporosis, and osteopetrosis in two upper limb musculoskeletal models. Simulations of three isometric and two isokinetic upper limb tasks were performed using each synthetic subject to predict muscle activations. Sensitivity coefficients were calculated using three different methods (two point, linear regression, and sensitivity functions) to understand how changes in Hill-type parameters influenced predicted muscle activations. The sensitivity coefficient methods were then compared by evaluating how well the coefficients accounted for measurement uncertainty. This was done by using the sensitivity coefficients to predict the range of muscle activations given known errors in measuring musculoskeletal parameters from medical imaging. Sensitivity functions were found to best account for measurement uncertainty. Simulated muscle activations were most sensitive to optimal fiber length and maximum isometric force during upper limb tasks. Importantly, the level of sensitivity was muscle and task dependent. These findings provide a foundation for how large synthetic datasets can be applied to capture physiologically diverse populations and understand how model parameters influence predictions.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junichi Ooida, Naoki Kiyohara, Hironaga Noguchi, Yuichiro Oguchi, Kohei Nagane, Takuya Sakaguchi, Gakuto Aoyama, Fumimasa Shige, James V Chapman, Masahiko Asami, Klaus Fuglsang Kofoed, Michael Huy Cuong Pham, Koshiro Suzuki
{"title":"An In Silico Model for Predicting the Efficacy of Edge-to-Edge Repair for Mitral Regurgitation.","authors":"Junichi Ooida, Naoki Kiyohara, Hironaga Noguchi, Yuichiro Oguchi, Kohei Nagane, Takuya Sakaguchi, Gakuto Aoyama, Fumimasa Shige, James V Chapman, Masahiko Asami, Klaus Fuglsang Kofoed, Michael Huy Cuong Pham, Koshiro Suzuki","doi":"10.1115/1.4064055","DOIUrl":"10.1115/1.4064055","url":null,"abstract":"<p><p>In recent years, transcatheter edge-to-edge repair (TEER) has been widely adopted as an effective treatment for mitral regurgitation (MR). The aim of this study is to develop a personalized in silico model to predict the effect of edge-to-edge repair in advance to the procedure for each individual patient. For this purpose, we propose a combination of a valve deformation model for computing the mitral valve (MV) orifice area (MVOA) and a lumped parameter model for the hemodynamics, specifically mitral regurgitation volume (RVol). Although we cannot obtain detailed information on the three-dimensional flow field near the mitral valve, we can rapidly simulate the important medical parameters for the clinical decision support. In the present method, we construct the patient-specific pre-operative models by using the parameter optimization and then simulate the postoperative state by applying the additional clipping condition. The computed preclip MVOAs show good agreement with the clinical measurements, and the correlation coefficient takes 0.998. In addition, the MR grade in terms of RVol also has good correlation with the grade by ground truth MVOA. Finally, we try to investigate the applicability for the predicting the postclip state. The simulated valve shapes clearly show the well-known double orifice and the improvement of the MVOA, compared with the preclip state. Similarly, we confirmed the improved reverse flow and MR grade in terms of RVol. A total computational time is approximately 8 h by using general-purpose PC. These results obviously indicate that the present in silico model has good capability for the assessment of edge-to-edge repair.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danielle M Sawka, Yunxing Su, Julie Monteagudo, Roberto Zenit
{"title":"Fluid Flow Analysis of Neonatal Dual-Lumen Cannulas for Venovenous Extracorporeal Membrane Oxygenation.","authors":"Danielle M Sawka, Yunxing Su, Julie Monteagudo, Roberto Zenit","doi":"10.1115/1.4064212","DOIUrl":"10.1115/1.4064212","url":null,"abstract":"<p><p>Hemolysis persists as a common and serious problem for neonatal patients on extracorporeal membrane oxygenation (ECMO). Since the cannula within the ECMO circuit is associated with hemolysis-inducing shear stresses, real-world internal fluid flow measurements are urgently needed to understand the mechanism and confirm computational estimates. This study appears to be the first experimental study of fluid flow inside commercial ECMO dual-lumen cannulas (DLCs) and first particle image velocimetry (PIV) visualization inside a complicated medical device. The internal geometries of four different opaque neonatal DLCs, both atrial and bicaval positioning geometries each sized 13 Fr and 16 Fr, were replicated by three-dimensional printing clear lumen scaled-up models, which were integrated in a circuit with appropriate ECMO flow parameters. PIV was then used to visualize two-dimensional fluid flow in a single cross section within the models. An empirical model accounting for shear stress and exposure time was used to compare the maximum expected level of hemolysis through each model. The maximum measured peak shear stress recorded was 16±2 Pa in the top arterial bicaval 13 Fr model. The atrial and 16 Fr cannula models never produced greater single-pass peak shear stress or hemolysis than the bicaval and 13 Fr models, respectively, and no difference was found in hemolysis at two different flow rates. After 5 days of flow, small DLC-induced hemolysis values for a single pass through each cannula were modeled to linearly accumulate and caused the most severe hemolysis in the bicaval 13 Fr DLC. Engineering and clinical solutions to improve cannula safety are proposed.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":"146 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138813236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirel Ajdaroski, So Young Baek, James A Ashton-Miller, Amanda O Esquivel
{"title":"Predicting Leg Forces and Knee Moments Using Inertial Measurement Units: An In Vitro Study.","authors":"Mirel Ajdaroski, So Young Baek, James A Ashton-Miller, Amanda O Esquivel","doi":"10.1115/1.4064145","DOIUrl":"10.1115/1.4064145","url":null,"abstract":"<p><p>We compared the ability of seven machine learning algorithms to use wearable inertial measurement unit (IMU) data to identify the severe knee loading cycles known to induce microdamage associated with anterior cruciate ligament rupture. Sixteen cadaveric knee specimens, dissected free of skin and muscle, were mounted in a rig simulating standardized jump landings. One IMU was located above and the other below the knee, the applied three-dimensional action and reaction loads were measured via six-axis load cells, and the three-dimensional knee kinematics were also recorded by a laboratory motion capture system. Machine learning algorithms were used to predict the knee moments and the tibial and femur vertical forces; 13 knees were utilized for training each model, while three were used for testing its accuracy (i.e., normalized root-mean-square error) and reliability (Bland-Altman limits of agreement). The results showed the models predicted force and knee moment values with acceptable levels of error and, although several models exhibited some form of bias, acceptable reliability. Further research will be needed to determine whether these types of models can be modified to attenuate the inevitable in vivo soft tissue motion artifact associated with highly dynamic activities like jump landings.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10750790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thanyani Pandelani, Diagarajen Carpanen, Spyros D Masouros
{"title":"Evaluating Pelvis Response During Simulated Underbody Blast Loading.","authors":"Thanyani Pandelani, Diagarajen Carpanen, Spyros D Masouros","doi":"10.1115/1.4064214","DOIUrl":"10.1115/1.4064214","url":null,"abstract":"<p><p>In recent conflicts, blast injury from landmines and improvised explosive devices (IEDs) has been the main mechanism of wounding and death. When a landmine or IED detonates under a vehicle (an under-body blast), the seat acceleration rapidly transmits a high load to the pelvis of the occupants, resulting in torso and pelvic injury. Pelvic fractures have high mortality rates, yet their injury mechanism has been poorly researched. Three (3) fresh-frozen male pelvic specimens were tested under axial impact loading. The pelvis was impacted mounted upside down by dropping a 12 kg mass at target impact velocities ranging from 1 to 8.6 m/s with time to peak velocity ranging from 3.8 to 5.8 ms. Resulting fractures were broadly categorized as involving a bilateral pubis rami fracture, a bilateral ischium fracture, and sacroiliac joint disruption. The study provides insights into the type and severity of pelvic injury that may occur over a range of under-body blast (UBB)-relevant loading profiles.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":"146 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138813225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}