自体肺动脉导管植入后胶原重塑的数学模型

IF 1.7 4区 医学 Q4 BIOPHYSICS
Michael S Sacks
{"title":"自体肺动脉导管植入后胶原重塑的数学模型","authors":"Michael S Sacks","doi":"10.1115/1.4065903","DOIUrl":null,"url":null,"abstract":"<p><p>This study was undertaken to develop a mathematical model of the long-term in vivo remodeling processes in postimplanted pulmonary artery (PA) conduits. Experimental results from two extant ovine in vivo studies, wherein polyglycolic-acid (PGA)/poly-L-lactic acid tubular conduits were constructed, cell seeded, incubated for 4 weeks, and then implanted in mature sheep to obtain the remodeling data for up to two years. Explanted conduit analysis included detailed novel structural and mechanical studies. Results in both studies indicated that the in vivo conduits remained dimensionally stable up to 80 weeks, so that the conduits maintained a constant in vivo stress and deformation state. In contrast, continued remodeling of the constituent collagen fiber network as evidenced by an increase in effective tissue uniaxial tangent modulus, which then stabilized by one year postimplant. A mesostructural constitute model was then applied to extant planar biaxial mechanical data and revealed several interesting features, including an initial pronounced increase in effective collagen fiber modulus, paralleled by a simultaneous shift toward longer, more uniformly length-distributed collagen fibers. Thus, while the conduit remained dimensionally stable, its internal collagen fibrous structure and resultant mechanical behaviors underwent continued remodeling that stabilized by one year. A time-evolving structural mixture-based mathematical model specialized for this unique form of tissue remodeling was developed, with a focus on time-evolving collagen fiber stiffness as the driver for tissue-level remodeling. The remodeling model was able to fully reproduce (1) the observed tissue-level increases in stiffness by time-evolving simultaneous increases in collagen fiber modulus and lengths, (2) maintenance of the constant collagen fiber angular dispersion, and (3) stabilization of the remodeling processes at one year. Collagen fiber remodeling geometry was directly verified experimentally by histological analysis of the time-evolving collagen fiber crimp, which matches model predictions very closely. Interestingly, the remodeling model indicated that the basis for tissue homeostasis was maintenance of the collagen fiber ensemble stress for all orientations, and not individual collagen fiber stresses. Unlike other growth and remodeling models that traditionally treat changes in the external boundary conditions (e.g., changes in blood pressure) as the primary input stimuli, the driver herein is changes to the internal constituent collagen fiber themselves due to cellular mediated cross-linking.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369691/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Model for Postimplant Collagen Remodeling in an Autologous Engineered Pulmonary Arterial Conduit.\",\"authors\":\"Michael S Sacks\",\"doi\":\"10.1115/1.4065903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was undertaken to develop a mathematical model of the long-term in vivo remodeling processes in postimplanted pulmonary artery (PA) conduits. Experimental results from two extant ovine in vivo studies, wherein polyglycolic-acid (PGA)/poly-L-lactic acid tubular conduits were constructed, cell seeded, incubated for 4 weeks, and then implanted in mature sheep to obtain the remodeling data for up to two years. Explanted conduit analysis included detailed novel structural and mechanical studies. Results in both studies indicated that the in vivo conduits remained dimensionally stable up to 80 weeks, so that the conduits maintained a constant in vivo stress and deformation state. In contrast, continued remodeling of the constituent collagen fiber network as evidenced by an increase in effective tissue uniaxial tangent modulus, which then stabilized by one year postimplant. A mesostructural constitute model was then applied to extant planar biaxial mechanical data and revealed several interesting features, including an initial pronounced increase in effective collagen fiber modulus, paralleled by a simultaneous shift toward longer, more uniformly length-distributed collagen fibers. Thus, while the conduit remained dimensionally stable, its internal collagen fibrous structure and resultant mechanical behaviors underwent continued remodeling that stabilized by one year. A time-evolving structural mixture-based mathematical model specialized for this unique form of tissue remodeling was developed, with a focus on time-evolving collagen fiber stiffness as the driver for tissue-level remodeling. The remodeling model was able to fully reproduce (1) the observed tissue-level increases in stiffness by time-evolving simultaneous increases in collagen fiber modulus and lengths, (2) maintenance of the constant collagen fiber angular dispersion, and (3) stabilization of the remodeling processes at one year. Collagen fiber remodeling geometry was directly verified experimentally by histological analysis of the time-evolving collagen fiber crimp, which matches model predictions very closely. Interestingly, the remodeling model indicated that the basis for tissue homeostasis was maintenance of the collagen fiber ensemble stress for all orientations, and not individual collagen fiber stresses. Unlike other growth and remodeling models that traditionally treat changes in the external boundary conditions (e.g., changes in blood pressure) as the primary input stimuli, the driver herein is changes to the internal constituent collagen fiber themselves due to cellular mediated cross-linking.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065903\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065903","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

根据现有的两项绵羊体内研究的实验结果,建立了植入后肺动脉(PA)导管体内长期重塑的数学模型。这两项研究的结果表明,体内导管的尺寸在 80 周内保持稳定,因此导管保持了恒定的体内应力和变形状态。相反,组成胶原纤维网络的持续重塑表现为有效组织单轴切线模量的增加,这在植入一年后趋于稳定。然后将中观结构构成模型应用于现存的平面双轴力学数据,结果显示有效胶原纤维模量最初明显增加,同时胶原纤维的长度分布更均匀、更长。针对这种独特的组织重塑形式,我们开发了一种基于结构混合物的时变数学模型,其重点是将时变胶原纤维刚度作为组织级重塑的驱动力。该模型能够完全再现:1)通过胶原纤维模量和长度的同步增加,观察到组织层面的硬度增加;2)保持胶原纤维角度分散的恒定;3)重塑过程在一年后趋于稳定。有趣的是,重塑模型表明,组织平衡的基础是维持所有方向的胶原纤维集合应力,而不是单个胶原纤维应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Model for Postimplant Collagen Remodeling in an Autologous Engineered Pulmonary Arterial Conduit.

This study was undertaken to develop a mathematical model of the long-term in vivo remodeling processes in postimplanted pulmonary artery (PA) conduits. Experimental results from two extant ovine in vivo studies, wherein polyglycolic-acid (PGA)/poly-L-lactic acid tubular conduits were constructed, cell seeded, incubated for 4 weeks, and then implanted in mature sheep to obtain the remodeling data for up to two years. Explanted conduit analysis included detailed novel structural and mechanical studies. Results in both studies indicated that the in vivo conduits remained dimensionally stable up to 80 weeks, so that the conduits maintained a constant in vivo stress and deformation state. In contrast, continued remodeling of the constituent collagen fiber network as evidenced by an increase in effective tissue uniaxial tangent modulus, which then stabilized by one year postimplant. A mesostructural constitute model was then applied to extant planar biaxial mechanical data and revealed several interesting features, including an initial pronounced increase in effective collagen fiber modulus, paralleled by a simultaneous shift toward longer, more uniformly length-distributed collagen fibers. Thus, while the conduit remained dimensionally stable, its internal collagen fibrous structure and resultant mechanical behaviors underwent continued remodeling that stabilized by one year. A time-evolving structural mixture-based mathematical model specialized for this unique form of tissue remodeling was developed, with a focus on time-evolving collagen fiber stiffness as the driver for tissue-level remodeling. The remodeling model was able to fully reproduce (1) the observed tissue-level increases in stiffness by time-evolving simultaneous increases in collagen fiber modulus and lengths, (2) maintenance of the constant collagen fiber angular dispersion, and (3) stabilization of the remodeling processes at one year. Collagen fiber remodeling geometry was directly verified experimentally by histological analysis of the time-evolving collagen fiber crimp, which matches model predictions very closely. Interestingly, the remodeling model indicated that the basis for tissue homeostasis was maintenance of the collagen fiber ensemble stress for all orientations, and not individual collagen fiber stresses. Unlike other growth and remodeling models that traditionally treat changes in the external boundary conditions (e.g., changes in blood pressure) as the primary input stimuli, the driver herein is changes to the internal constituent collagen fiber themselves due to cellular mediated cross-linking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信