simMACT, a Software Demonstrator to Improve Maximum Actuation Joint Torques Simulation for Ergonomics Assessment.

IF 1.7 4区 医学 Q4 BIOPHYSICS
Jonathan H Savin, Nasser Rezzoug
{"title":"simMACT, a Software Demonstrator to Improve Maximum Actuation Joint Torques Simulation for Ergonomics Assessment.","authors":"Jonathan H Savin, Nasser Rezzoug","doi":"10.1115/1.4064661","DOIUrl":null,"url":null,"abstract":"<p><p>The maximum actuation joint torques that operators can perform at the workplace are essential parameters for biomechanical risk assessment. However, workstation designers generally only have at their disposal the imprecise and sparse estimates of these quantities provided with digital manikin digital human model (DHM) software. For instance, such tools consider only static postures and ignore important specificities of the human musculoskeletal system such as interjoints couplings. To alleviate the weaknesses of existing approaches implemented in digital human modeling tools relying on torque databases, this paper describes a methodology based on a class of polytopes called zonotopes and musculoskeletal simulation to assess maximum actuation torques. It has two main advantages, the ability to estimate maximum joint torques for any posture and taking into account musculoskeletal specificities unlike existing digital human modeling tools. As a case study, it also compares simulated maximum actuation torques to those recorded during an experiment described in the literature, focusing on an isometric task of the upper limb. This simulation has led to similar or smaller errors than DHM software tools. Hence, this methodology may help in interpreting interjoint couplings, choosing appropriate mathematical models or design experimental protocols. It may also be implemented in DHM software to provide designers with more comprehensive and more reliable data.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum actuation joint torques that operators can perform at the workplace are essential parameters for biomechanical risk assessment. However, workstation designers generally only have at their disposal the imprecise and sparse estimates of these quantities provided with digital manikin digital human model (DHM) software. For instance, such tools consider only static postures and ignore important specificities of the human musculoskeletal system such as interjoints couplings. To alleviate the weaknesses of existing approaches implemented in digital human modeling tools relying on torque databases, this paper describes a methodology based on a class of polytopes called zonotopes and musculoskeletal simulation to assess maximum actuation torques. It has two main advantages, the ability to estimate maximum joint torques for any posture and taking into account musculoskeletal specificities unlike existing digital human modeling tools. As a case study, it also compares simulated maximum actuation torques to those recorded during an experiment described in the literature, focusing on an isometric task of the upper limb. This simulation has led to similar or smaller errors than DHM software tools. Hence, this methodology may help in interpreting interjoint couplings, choosing appropriate mathematical models or design experimental protocols. It may also be implemented in DHM software to provide designers with more comprehensive and more reliable data.

simMACT,用于改进人体工程学评估最大启动关节扭矩模拟的软件演示器。
操作员在工作场所可以完成的最大关节扭矩是生物力学风险评估的基本参数。然而,工作站设计人员通常只能利用数字人体模型(DHM)软件提供的不精确和稀疏的估计值。例如,这些工具只考虑了静态姿势,而忽略了人体肌肉骨骼系统的重要特性,如关节间的耦合。为了缓解现有数字人体建模工具中依靠扭矩数据库实现的方法的弱点,本文介绍了一种基于称为 "带状多面体"(zonotopes)的多面体和肌肉骨骼模拟来评估最大驱动扭矩的方法。与现有的数字人体建模工具不同,该方法有两大优势,一是能够估算任何姿势的最大关节扭矩,二是考虑到了肌肉骨骼的特殊性。作为一项案例研究,它还将模拟的最大驱动扭矩与文献中描述的实验记录进行了比较,实验重点是上肢的等距任务。模拟结果与 DHM 软件工具的误差相似或更小。因此,这种方法有助于解释关节间的耦合、选择适当的数学模型或设计实验方案。它也可以在 DHM 软件中实施,为设计者提供更全面、更可靠的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信