{"title":"膝关节浅内侧副韧带纤维束的材料特性","authors":"Wentao Chen, Qing Zhou, Jisi Tang","doi":"10.1115/1.4064476","DOIUrl":null,"url":null,"abstract":"<p><p>The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material Properties of Fiber Bundles of the Superficial Medial Collateral Ligament of the Knee Joint.\",\"authors\":\"Wentao Chen, Qing Zhou, Jisi Tang\",\"doi\":\"10.1115/1.4064476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064476\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064476","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
人体膝关节的浅内侧副韧带(sMCL)具有功能上独立的前纤维束和后纤维束。在行走过程中,随着膝关节屈曲角度的变化,这两条纤维束会交替受力。迄今为止,在膝关节韧带模拟中通常无法区分这两条纤维束,因为有关其材料特性的信息很少。在这项研究中,我们对成熟猪跗关节的 sMCL 进行了准静态拉伸试验,获得了前束(AB)、后束(PB)和整条韧带(WL)的材料特性。AB 和 PB 的破坏应力相似,但阈值应变、模量和破坏应变不同。因此,我们建议为这两种纤维束分配不同的材料属性(即模量和破坏应变),以在人体模型中实现生物保真韧带响应。然而,在 AB 和 PB 上进行拉伸测试通常并不方便。因此,我们提出了一种基于微结构模型的方法,根据 WL 的测试结果预测 AB 和 PB 的材料特性。所获得的 AB 和 PB 模量值与测试测量值相比,误差分别为 2% 和 0.3%。这种方法可以降低获取模拟所需的机械性能数据的实验成本。
Material Properties of Fiber Bundles of the Superficial Medial Collateral Ligament of the Knee Joint.
The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.
期刊介绍:
Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.