Journal of Combinatorial Theory Series B最新文献

筛选
英文 中文
Excluded minors for the Klein bottle II. Cascades 克莱因瓶 II 不包括未成年人。级联
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-01-12 DOI: 10.1016/j.jctb.2023.12.006
Bojan Mohar , Petr Škoda
{"title":"Excluded minors for the Klein bottle II. Cascades","authors":"Bojan Mohar ,&nbsp;Petr Škoda","doi":"10.1016/j.jctb.2023.12.006","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.12.006","url":null,"abstract":"<div><p>Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I, it was shown that graphs that are critical for embeddings into surfaces of Euler genus <em>k</em><span> or for embeddings into nonorientable surface of genus </span><em>k</em><span><span> are built from 3-connected components, called hoppers and cascades. In Part II, all cascades for Euler genus 2 are classified. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the </span>Klein bottle is obtained.</span></p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse graphs without long induced paths 没有长诱导路径的稀疏图
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-01-05 DOI: 10.1016/j.jctb.2023.12.003
Oscar Defrain , Jean-Florent Raymond
{"title":"Sparse graphs without long induced paths","authors":"Oscar Defrain ,&nbsp;Jean-Florent Raymond","doi":"10.1016/j.jctb.2023.12.003","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.12.003","url":null,"abstract":"<div><p>Graphs of bounded degeneracy are known to contain induced paths of order <span><math><mi>Ω</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> when they contain a path of order <em>n</em>, as proved by Nešetřil and Ossona de Mendez (2012). In 2016 Esperet, Lemoine, and Maffray conjectured that this bound could be improved to <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>c</mi></mrow></msup><mo>)</mo></math></span> for some constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> depending on the degeneracy.</p><p>We disprove this conjecture by constructing, for arbitrarily large values of <em>n</em>, a graph that is 2-degenerate, has a path of order <em>n</em>, and where all induced paths have order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>. We also show that the graphs we construct have linearly bounded coloring numbers.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139107742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Count and cofactor matroids of highly connected graphs 高连接图的计数和共因矩阵
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-01-05 DOI: 10.1016/j.jctb.2023.12.004
Dániel Garamvölgyi , Tibor Jordán , Csaba Király
{"title":"Count and cofactor matroids of highly connected graphs","authors":"Dániel Garamvölgyi ,&nbsp;Tibor Jordán ,&nbsp;Csaba Király","doi":"10.1016/j.jctb.2023.12.004","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.12.004","url":null,"abstract":"<div><p>We consider two types of matroids defined on the edge set of a graph <em>G</em>: count matroids <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by a sparsity count involving the parameters <em>k</em> and <em>ℓ</em>, and the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, in which independence is defined by linear independence in the cofactor matrix of <em>G</em>. We show, for each pair <span><math><mo>(</mo><mi>k</mi><mo>,</mo><mi>ℓ</mi><mo>)</mo></math></span>, that if <em>G</em> is sufficiently highly connected, then <span><math><mi>G</mi><mo>−</mo><mi>e</mi></math></span> has maximum rank for all <span><math><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and the matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is connected. These results unify and extend several previous results, including theorems of Nash-Williams and Tutte (<span><math><mi>k</mi><mo>=</mo><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span>), and Lovász and Yemini (<span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mi>ℓ</mi><mo>=</mo><mn>3</mn></math></span>). We also prove that if <em>G</em> is highly connected, then the vertical connectivity of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is also high.</p><p>We use these results to generalize Whitney's celebrated result on the graphic matroid of <em>G</em> (which corresponds to <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>) to all count matroids and to the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid: if <em>G</em> is highly connected, depending on <em>k</em> and <em>ℓ</em>, then the count matroid <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>; and similarly, if <em>G</em> is 14-connected, then its <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> uniquely determines <em>G</em>. We also derive similar results for the <em>t</em>-fold union of the <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-cofactor matroid, and use them to prove that every 24-connected graph has a spanning tree <em>T</em> for which <span><math><mi>G</mi><mo>−</mo><mi>E</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is 3-connected, whi","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895623001120/pdfft?md5=3aa4475308b3f1d90b43521f41db45ba&pid=1-s2.0-S0095895623001120-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139107741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Turán graphs with bounded matching number 匹配数有界的图兰图
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-12-15 DOI: 10.1016/j.jctb.2023.12.002
Noga Alon , Péter Frankl
{"title":"Turán graphs with bounded matching number","authors":"Noga Alon ,&nbsp;Péter Frankl","doi":"10.1016/j.jctb.2023.12.002","DOIUrl":"10.1016/j.jctb.2023.12.002","url":null,"abstract":"<div><p><span>We determine the maximum possible number of edges of a graph with </span><em>n</em><span> vertices, matching number at most </span><em>s</em> and clique number at most <em>k</em> for all admissible values of the parameters.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a problem of El-Zahar and Erdős 关于扎哈尔和厄尔多斯的一个问题
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-12-11 DOI: 10.1016/j.jctb.2023.11.004
Tung Nguyen , Alex Scott , Paul Seymour
{"title":"On a problem of El-Zahar and Erdős","authors":"Tung Nguyen ,&nbsp;Alex Scott ,&nbsp;Paul Seymour","doi":"10.1016/j.jctb.2023.11.004","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.11.004","url":null,"abstract":"<div><p>Two subgraphs <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> of a graph <em>G</em> are <em>anticomplete</em> if they are vertex-disjoint and there are no edges joining them. Is it true that if <em>G</em><span> is a graph with bounded clique number, and sufficiently large chromatic number, then it has two anticomplete subgraphs, both with large chromatic number? This is a question raised by El-Zahar and Erdős in 1986, and remains open. If so, then at least there should be two anticomplete subgraphs both with large minimum degree, and that is one of our results.</span></p><p>We prove two variants of this. First, a strengthening: we can ask for one of the two subgraphs to have large chromatic number: that is, for all <span><math><mi>t</mi><mo>,</mo><mi>c</mi><mo>≥</mo><mn>1</mn></math></span> there exists <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span> such that if <em>G</em> has chromatic number at least <em>d</em>, and does not contain the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> as a subgraph, then there are anticomplete subgraphs <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span>, where <em>A</em> has minimum degree at least <em>c</em> and <em>B</em> has chromatic number at least <em>c</em>.</p><p>Second, we look at what happens if we replace the hypothesis that <em>G</em> has sufficiently large chromatic number with the hypothesis that <em>G</em> has sufficiently large minimum degree. This, together with excluding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, is <em>not</em> enough to guarantee two anticomplete subgraphs both with large minimum degree; but it works if instead of excluding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span> we exclude the complete bipartite graph </span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>. More exactly: for all <span><math><mi>t</mi><mo>,</mo><mi>c</mi><mo>≥</mo><mn>1</mn></math></span> there exists <span><math><mi>d</mi><mo>≥</mo><mn>1</mn></math></span> such that if <em>G</em> has minimum degree at least <em>d</em>, and does not contain the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> as a subgraph, then there are two anticomplete subgraphs both with minimum degree at least <em>c</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138570098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph partitions under average degree constraint 平均度约束下的图分区
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-12-05 DOI: 10.1016/j.jctb.2023.11.006
Yan Wang , Hehui Wu
{"title":"Graph partitions under average degree constraint","authors":"Yan Wang ,&nbsp;Hehui Wu","doi":"10.1016/j.jctb.2023.11.006","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.11.006","url":null,"abstract":"<div><p>In this paper, we prove that every graph with average degree at least <span><math><mi>s</mi><mo>+</mo><mi>t</mi><mo>+</mo><mn>2</mn></math></span> has a vertex partition into two parts, such that one part has average degree at least <em>s</em>, and the other part has average degree at least <em>t</em>. This solves a conjecture of Csóka, Lo, Norin, Wu and Yepremyan.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138484338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hitting all maximum stable sets in P5-free graphs 在P5-free图中命中所有最大稳定集
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-11-29 DOI: 10.1016/j.jctb.2023.11.005
Sepehr Hajebi , Yanjia Li , Sophie Spirkl
{"title":"Hitting all maximum stable sets in P5-free graphs","authors":"Sepehr Hajebi ,&nbsp;Yanjia Li ,&nbsp;Sophie Spirkl","doi":"10.1016/j.jctb.2023.11.005","DOIUrl":"10.1016/j.jctb.2023.11.005","url":null,"abstract":"<div><p>We prove that every <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span><span>-free graph of bounded clique number contains a small hitting set of all its maximum stable sets (where </span><span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> denotes the <em>t</em>-vertex path, and for graphs <span><math><mi>G</mi><mo>,</mo><mi>H</mi></math></span>, we say <em>G</em> is <em>H-free</em><span> if no induced subgraph of </span><em>G</em> is isomorphic to <em>H</em>).</p><p>More generally, let us say a class <span><math><mi>C</mi></math></span> of graphs is <em>η-bounded</em> if there exists a function <span><math><mi>h</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></math></span> for every graph <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span>, where <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> denotes smallest cardinality of a hitting set of all maximum stable sets in <em>G</em>, and <span><math><mi>ω</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the clique number of <em>G</em>. Also, <span><math><mi>C</mi></math></span> is said to be <em>polynomially η-bounded</em> if in addition <em>h</em> can be chosen to be a polynomial.</p><p>We introduce <em>η</em>-boundedness inspired by a question of Alon (asking how large <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> can be for a 3-colourable graph <em>G</em>), and motivated by a number of meaningful similarities to <em>χ</em>-boundedness, namely,</p><ul><li><span>•</span><span><p>given a graph <em>G</em>, we have <span><math><mi>η</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em> if and only if <em>G</em> is perfect;</p></span></li><li><span>•</span><span><p>there are graphs <em>G</em> with both <span><math><mi>η</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and the girth of <em>G</em> arbitrarily large; and</p></span></li><li><span>•</span><span><p>if <span><math><mi>C</mi></math></span> is a hereditary class of graphs which is polynomially <em>η</em>-bounded, then <span><math><mi>C</mi></math></span> satisfies the Erdős-Hajnal conjecture.</p></span></li></ul> The second bullet above in particular suggests an analogue of the Gyárfás-Sumner conjecture, that the class of all <em>H</em>-free graphs is <em>η</em>-bounded if (and only if) <em>H</em> is a forest. Like <em>χ</em>-boundedness, the case where <em>H</em> is a star is easy to verify, and we prove two non-trivial extensions of this: <em>H</em>-free graphs are <em>η</em>-bounded if (1) <em>H</em> has a vertex incident with all edges of <em>H</em>, or (2) <em>H</em> can be obtained from a star by subdividing at most one edge, exactly once.<p>Unlike <em>χ</em>-boundedness","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138455110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Dimension is polynomial in height for posets with planar cover graphs 对于具有平面覆盖图的偏置集,维度是高度的多项式
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-11-29 DOI: 10.1016/j.jctb.2023.10.009
Jakub Kozik , Piotr Micek , William T. Trotter
{"title":"Dimension is polynomial in height for posets with planar cover graphs","authors":"Jakub Kozik ,&nbsp;Piotr Micek ,&nbsp;William T. Trotter","doi":"10.1016/j.jctb.2023.10.009","DOIUrl":"10.1016/j.jctb.2023.10.009","url":null,"abstract":"<div><p>We show that height <em>h</em><span> posets that have planar cover graphs have dimension </span><span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span>. Previously, the best upper bound was <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></msup></math></span><span>. Planarity plays a key role in our arguments, since there are posets such that (1) dimension is exponential in height and (2) the cover graph excludes </span><span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> as a minor.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138455878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Dirac-type conditions for spanning bounded-degree hypertrees 生成有界度超树的dirac型条件
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-11-22 DOI: 10.1016/j.jctb.2023.11.002
Matías Pavez-Signé , Nicolás Sanhueza-Matamala , Maya Stein
{"title":"Dirac-type conditions for spanning bounded-degree hypertrees","authors":"Matías Pavez-Signé ,&nbsp;Nicolás Sanhueza-Matamala ,&nbsp;Maya Stein","doi":"10.1016/j.jctb.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.11.002","url":null,"abstract":"<div><p>We prove that for fixed <em>k</em>, every <em>k</em><span>-uniform hypergraph on </span><em>n</em> vertices and of minimum codegree at least <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contains every spanning tight <em>k</em>-tree of bounded vertex degree as a subgraph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp. We also prove an extension of our result to hypergraphs that satisfy some weak quasirandomness conditions.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edge-colouring graphs with local list sizes 具有局部列表大小的边着色图
IF 1.4 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2023-11-22 DOI: 10.1016/j.jctb.2023.10.010
Marthe Bonamy , Michelle Delcourt , Richard Lang , Luke Postle
{"title":"Edge-colouring graphs with local list sizes","authors":"Marthe Bonamy ,&nbsp;Michelle Delcourt ,&nbsp;Richard Lang ,&nbsp;Luke Postle","doi":"10.1016/j.jctb.2023.10.010","DOIUrl":"https://doi.org/10.1016/j.jctb.2023.10.010","url":null,"abstract":"<div><p>The famous List Colouring Conjecture from the 1970s states that for every graph <em>G</em> the chromatic index of <em>G</em><span> is equal to its list chromatic index. In 1996 in a seminal paper, Kahn proved that the List Colouring Conjecture holds asymptotically. Our main result is a local generalization of Kahn's theorem. More precisely, we show that, for a graph </span><em>G</em><span> with sufficiently large maximum degree Δ and minimum degree </span><span><math><mi>δ</mi><mo>≥</mo><msup><mrow><mi>ln</mi></mrow><mrow><mn>25</mn></mrow></msup><mo>⁡</mo><mi>Δ</mi></math></span>, the following holds: for every assignment <em>L</em> of lists of colours to the edges of <em>G</em>, such that <span><math><mo>|</mo><mi>L</mi><mo>(</mo><mi>e</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><mo>⋅</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>deg</mi><mo>⁡</mo><mo>(</mo><mi>v</mi><mo>)</mo><mo>}</mo></mrow></math></span> for each edge <span><math><mi>e</mi><mo>=</mo><mi>u</mi><mi>v</mi></math></span>, there is an <em>L</em>-edge-colouring of <em>G</em>. Furthermore, Kahn showed that the List Colouring Conjecture holds asymptotically for linear, <em>k</em><span>-uniform hypergraphs, and recently Molloy generalized Kahn's original result to correspondence colouring as well as its hypergraph generalization. We prove local versions of all of these generalizations by showing a weighted version that simultaneously implies all of our results.</span></p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138430648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信