Journal of Combinatorial Theory Series B最新文献

筛选
英文 中文
The automorphism group of a complementary prism 互补棱柱的自形群
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-08-02 DOI: 10.1016/j.jctb.2024.07.004
Marko Orel
{"title":"The automorphism group of a complementary prism","authors":"Marko Orel","doi":"10.1016/j.jctb.2024.07.004","DOIUrl":"10.1016/j.jctb.2024.07.004","url":null,"abstract":"<div><p>Given a finite simple graph Γ on <em>n</em> vertices its complementary prism is the graph <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> that is obtained from Γ and its complement <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> by adding a perfect matching where each its edge connects two copies of the same vertex in Γ and <span><math><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>. It generalizes the Petersen graph, which is obtained if Γ is the pentagon. The automorphism group of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is described for an arbitrary graph Γ. In particular, it is shown that the ratio between the cardinalities of the automorphism groups of <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and Γ can attain only the values 1, 2, 4, and 12. It is shown that <span><math><mi>Γ</mi><mover><mrow><mi>Γ</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> is vertex-transitive if and only if Γ is vertex-transitive and self-complementary. Moreover, the complementary prism is not a Cayley graph whenever <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 406-429"},"PeriodicalIF":1.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000637/pdfft?md5=a7e845989152de594006704697688b0c&pid=1-s2.0-S0095895624000637-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H-factors in graphs with small independence number 小独立数图形中的 H 因子
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-31 DOI: 10.1016/j.jctb.2024.07.005
Ming Chen , Jie Han , Guanghui Wang , Donglei Yang
{"title":"H-factors in graphs with small independence number","authors":"Ming Chen ,&nbsp;Jie Han ,&nbsp;Guanghui Wang ,&nbsp;Donglei Yang","doi":"10.1016/j.jctb.2024.07.005","DOIUrl":"10.1016/j.jctb.2024.07.005","url":null,"abstract":"<div><p>Let <em>H</em> be an <em>h</em>-vertex graph. The vertex arboricity <span><math><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of <em>H</em> is the least integer <em>r</em> such that <span><math><mi>V</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> can be partitioned into <em>r</em> parts and each part induces a forest in <em>H</em>. We show that for sufficiently large <span><math><mi>n</mi><mo>∈</mo><mi>h</mi><mi>N</mi></math></span>, every <em>n</em>-vertex graph <em>G</em> with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>max</mi><mo>⁡</mo><mrow><mo>{</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>,</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>n</mi><mo>}</mo></mrow></math></span> and <span><math><mi>α</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contains an <em>H</em>-factor, where <span><math><mi>f</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> or <span><math><mn>2</mn><mi>a</mi><mi>r</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The result can be viewed an analogue of the Alon–Yuster theorem <span><span>[1]</span></span> in Ramsey–Turán theory, which generalizes the results of Balogh–Molla–Sharifzadeh <span><span>[2]</span></span> and Knierim–Su <span><span>[21]</span></span> on clique factors. In particular the degree conditions are asymptotically sharp for infinitely many graphs <em>H</em> which are not cliques.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 373-405"},"PeriodicalIF":1.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weak box-perfect graph theorem 弱箱完全图定理
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-30 DOI: 10.1016/j.jctb.2024.07.006
Patrick Chervet , Roland Grappe
{"title":"A weak box-perfect graph theorem","authors":"Patrick Chervet ,&nbsp;Roland Grappe","doi":"10.1016/j.jctb.2024.07.006","DOIUrl":"10.1016/j.jctb.2024.07.006","url":null,"abstract":"<div><p>A graph <em>G</em> is called <em>perfect</em> if <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>=</mo><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for every induced subgraph <em>H</em> of <em>G</em>, where <span><math><mi>ω</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> is the clique number of <em>H</em> and <span><math><mi>χ</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> its chromatic number. The Weak Perfect Graph Theorem of Lovász states that a graph <em>G</em> is perfect if and only if its complement <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> is perfect. This does not hold for box-perfect graphs, which are the perfect graphs whose stable set polytope is box-totally dual integral.</p><p>We prove that both <em>G</em> and <span><math><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></math></span> are box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect, where <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is obtained by adding a universal vertex to <em>G</em>. Consequently, <span><math><msup><mrow><mi>G</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect if and only if <span><math><msup><mrow><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover></mrow><mrow><mo>+</mo></mrow></msup></math></span> is box-perfect. As a corollary, we characterize when the complete join of two graphs is box-perfect.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 367-372"},"PeriodicalIF":1.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000650/pdfft?md5=353ef0de641409c4b03042060f5fe02a&pid=1-s2.0-S0095895624000650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary rigidity of CAT(0) cube complexes CAT(0) 立方体复合物的边界刚度
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.07.003
Jérémie Chalopin, Victor Chepoi
{"title":"Boundary rigidity of CAT(0) cube complexes","authors":"Jérémie Chalopin,&nbsp;Victor Chepoi","doi":"10.1016/j.jctb.2024.07.003","DOIUrl":"10.1016/j.jctb.2024.07.003","url":null,"abstract":"<div><p>In this note, we prove that finite CAT(0) cube complexes can be reconstructed from their boundary distances (computed in their 1-skeleta). This result was conjectured by Haslegrave, Scott, Tamitegama, and Tan (2023). The reconstruction of a finite cell complex from the boundary distances is the discrete version of the boundary rigidity problem, which is a classical problem from Riemannian geometry. In the proof, we use the bijection between CAT(0) cube complexes and median graphs, and corner peelings of median graphs.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 352-366"},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional coloring with local demands and applications to degree-sequence bounds on the independence number 具有局部要求的分数着色及其在独立数度序界限中的应用
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.07.002
Tom Kelly , Luke Postle
{"title":"Fractional coloring with local demands and applications to degree-sequence bounds on the independence number","authors":"Tom Kelly ,&nbsp;Luke Postle","doi":"10.1016/j.jctb.2024.07.002","DOIUrl":"10.1016/j.jctb.2024.07.002","url":null,"abstract":"<div><p>In a fractional coloring, vertices of a graph are assigned measurable subsets of the real line and adjacent vertices receive disjoint subsets; the fractional chromatic number of a graph is at most <em>k</em> if it has a fractional coloring in which each vertex receives a subset of <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> of measure at least <span><math><mn>1</mn><mo>/</mo><mi>k</mi></math></span>. We introduce and develop the theory of “fractional colorings with local demands” wherein each vertex “demands” a certain amount of color that is determined by local parameters such as its degree or the clique number of its neighborhood. This framework provides the natural setting in which to generalize degree-sequence type bounds on the independence number. Indeed, by Linear Programming Duality, all of the problems we study have an equivalent formulation as a problem concerning weighted independence numbers, and they often imply new bounds on the independence number.</p><p>Our results and conjectures are inspired by many of the most classical results and important open problems concerning the independence number and the chromatic number, often simultaneously. We conjecture a local strengthening of both Shearer's bound on the independence number of triangle-free graphs and the fractional relaxation of Molloy's recent bound on their chromatic number, as well as a longstanding problem of Ajtai et al. on the independence number of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>-free graphs and the fractional relaxations of Reed's <span><math><mi>ω</mi><mo>,</mo><mi>Δ</mi><mo>,</mo><mi>χ</mi></math></span> Conjecture and the Total Coloring Conjecture. We prove an approximate version of the first two, and we prove “local demands” versions of Vizing's Theorem and of some <em>χ</em>-boundedness results.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 298-337"},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An oriented discrepancy version of Dirac's theorem 狄拉克定理的定向差异版本
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.06.008
Andrea Freschi, Allan Lo
{"title":"An oriented discrepancy version of Dirac's theorem","authors":"Andrea Freschi,&nbsp;Allan Lo","doi":"10.1016/j.jctb.2024.06.008","DOIUrl":"10.1016/j.jctb.2024.06.008","url":null,"abstract":"<div><p>The study of graph discrepancy problems, initiated by Erdős in the 1960s, has received renewed attention in recent years. In general, given a 2-edge-coloured graph <em>G</em>, one is interested in embedding a copy of a graph <em>H</em> in <em>G</em> with large discrepancy (i.e. the copy of <em>H</em> contains significantly more than half of its edges in one colour).</p><p>Motivated by this line of research, Gishboliner, Krivelevich and Michaeli considered an oriented version of graph discrepancy for Hamilton cycles. In particular, they conjectured the following generalisation of Dirac's theorem: if <em>G</em> is an oriented graph on <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> vertices with <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mi>n</mi><mo>/</mo><mn>2</mn></math></span>, then <em>G</em> contains a Hamilton cycle with at least <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> edges pointing forwards. In this paper, we present a full resolution to this conjecture.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 338-351"},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000571/pdfft?md5=c4578c27cd9e214edf177c194b1972bb&pid=1-s2.0-S0095895624000571-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Erdős-Gyárfás function f(n,4,5)=56n+o(n) — So Gyárfás was right Erdős-Gyárfás 函数 f(n,4,5)=56n+o(n) - 所以 Gyárfás 是对的
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-22 DOI: 10.1016/j.jctb.2024.07.001
Patrick Bennett , Ryan Cushman , Andrzej Dudek , Paweł Prałat
{"title":"The Erdős-Gyárfás function f(n,4,5)=56n+o(n) — So Gyárfás was right","authors":"Patrick Bennett ,&nbsp;Ryan Cushman ,&nbsp;Andrzej Dudek ,&nbsp;Paweł Prałat","doi":"10.1016/j.jctb.2024.07.001","DOIUrl":"10.1016/j.jctb.2024.07.001","url":null,"abstract":"<div><p>A <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is an edge-coloring of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> where every 4-clique spans at least five colors. We show that there exist <span><math><mo>(</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></math></span>-colorings of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> using <span><math><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> colors. This settles a disagreement between Erdős and Gyárfás reported in their 1997 paper. Our construction uses a randomized process which we analyze using the so-called differential equation method to establish dynamic concentration. In particular, our coloring process uses random triangle removal, a process first introduced by Bollobás and Erdős, and analyzed by Bohman, Frieze and Lubetzky.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 253-297"},"PeriodicalIF":1.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem 通过惠特尼断路定理改进色度多项式的零点界限
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-16 DOI: 10.1016/j.jctb.2024.06.005
Matthew Jenssen , Viresh Patel , Guus Regts
{"title":"Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem","authors":"Matthew Jenssen ,&nbsp;Viresh Patel ,&nbsp;Guus Regts","doi":"10.1016/j.jctb.2024.06.005","DOIUrl":"10.1016/j.jctb.2024.06.005","url":null,"abstract":"<div><p>We prove that for any graph <em>G</em> of maximum degree at most Δ, the zeros of its chromatic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (in <span><math><mi>C</mi></math></span>) lie inside the disc of radius 5.94Δ centered at 0. This improves on the previously best known bound of approximately 6.91Δ.</p><p>We also obtain improved bounds for graphs of high girth. We prove that for every <em>g</em> there is a constant <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> such that for any graph <em>G</em> of maximum degree at most Δ and girth at least <em>g</em>, the zeros of its chromatic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> lie inside the disc of radius <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>Δ</mi></math></span> centered at 0, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is the solution to a certain optimization problem. In particular, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>&lt;</mo><mn>5</mn></math></span> when <span><math><mi>g</mi><mo>≥</mo><mn>5</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>&lt;</mo><mn>4</mn></math></span> when <span><math><mi>g</mi><mo>≥</mo><mn>25</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> tends to approximately 3.86 as <span><math><mi>g</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph <em>G</em> to the generating function of so-called broken-circuit-free forests in <em>G</em>. We also establish a zero-free disc for the generating function of all forests in <em>G</em> (aka the partition function of the arboreal gas) which may be of independent interest.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 233-252"},"PeriodicalIF":1.2,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009589562400056X/pdfft?md5=75decf318d359a608bc9f520805078ff&pid=1-s2.0-S009589562400056X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linkages and removable paths avoiding vertices 避开顶点的连线和可移动路径
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-15 DOI: 10.1016/j.jctb.2024.06.006
Xiying Du, Yanjia Li, Shijie Xie , Xingxing Yu
{"title":"Linkages and removable paths avoiding vertices","authors":"Xiying Du,&nbsp;Yanjia Li,&nbsp;Shijie Xie ,&nbsp;Xingxing Yu","doi":"10.1016/j.jctb.2024.06.006","DOIUrl":"10.1016/j.jctb.2024.06.006","url":null,"abstract":"<div><p>A graph <em>G</em> is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked if, for any distinct vertices <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in <em>G</em>, there exist disjoint connected subgraphs <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> of <em>G</em> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span>. A fundamental result in structural graph theory is the characterization of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-linked graphs. It appears to be difficult to characterize <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked graphs for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we provide a partial characterization of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked graphs. This implies that every <span><math><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-connected graphs <em>G</em> is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked and for any distinct vertices <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of <em>G</em>, there is a path <em>P</em> in <em>G</em> between <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and avoiding <span><math><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mi>G</mi><mo>−</mo><mi>P</mi></math></span> is connected, improving a previous connectivity bound of 10<em>m</em>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 211-232"},"PeriodicalIF":1.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral arbitrariness for trees fails spectacularly 树木的光谱任意性失败得很厉害
IF 1.2 1区 数学
Journal of Combinatorial Theory Series B Pub Date : 2024-07-14 DOI: 10.1016/j.jctb.2024.06.007
Shaun M. Fallat , H. Tracy Hall , Rupert H. Levene , Seth A. Meyer , Shahla Nasserasr , Polona Oblak , Helena Šmigoc
{"title":"Spectral arbitrariness for trees fails spectacularly","authors":"Shaun M. Fallat ,&nbsp;H. Tracy Hall ,&nbsp;Rupert H. Levene ,&nbsp;Seth A. Meyer ,&nbsp;Shahla Nasserasr ,&nbsp;Polona Oblak ,&nbsp;Helena Šmigoc","doi":"10.1016/j.jctb.2024.06.007","DOIUrl":"https://doi.org/10.1016/j.jctb.2024.06.007","url":null,"abstract":"<div><p>Given a graph <em>G</em>, consider the family of real symmetric matrices with the property that the pattern of their nonzero off-diagonal entries corresponds to the edges of <em>G</em>. For the past 30 years a central problem has been to determine which spectra are realizable in this matrix class. Using combinatorial methods, we identify a family of graphs and multiplicity lists whose realizable spectra are highly restricted. In particular, we construct trees with multiplicity lists that require a unique spectrum, up to shifting and scaling. This represents the most extreme possible failure of spectral arbitrariness for a multiplicity list, and greatly extends all previously known instances of this phenomenon, in which only single linear constraints on the eigenvalues were observed.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 161-210"},"PeriodicalIF":1.2,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141605832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信