{"title":"On graph classes with minor-universal elements","authors":"Agelos Georgakopoulos","doi":"10.1016/j.jctb.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>U</em> is universal for a graph class <span><math><mi>C</mi><mo>∋</mo><mi>U</mi></math></span>, if every <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span> is a minor of <em>U</em>. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that do not have a universal element.</p><p>Some of our results and questions may be of interest from the finite graph perspective. In particular, one of our side-results is that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-minor-free graph is a minor of a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-minor-free graph of maximum degree 22.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000741/pdfft?md5=b5bdf1f35e156e3581f5a8ffea761652&pid=1-s2.0-S0095895624000741-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000741","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A graph U is universal for a graph class , if every is a minor of U. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding , or , or as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that do not have a universal element.
Some of our results and questions may be of interest from the finite graph perspective. In particular, one of our side-results is that every -minor-free graph is a minor of a -minor-free graph of maximum degree 22.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.