On graph classes with minor-universal elements

IF 1.2 1区 数学 Q1 MATHEMATICS
Agelos Georgakopoulos
{"title":"On graph classes with minor-universal elements","authors":"Agelos Georgakopoulos","doi":"10.1016/j.jctb.2024.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>U</em> is universal for a graph class <span><math><mi>C</mi><mo>∋</mo><mi>U</mi></math></span>, if every <span><math><mi>G</mi><mo>∈</mo><mi>C</mi></math></span> is a minor of <em>U</em>. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>, or <span><math><msub><mrow><mi>K</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that do not have a universal element.</p><p>Some of our results and questions may be of interest from the finite graph perspective. In particular, one of our side-results is that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-minor-free graph is a minor of a <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-minor-free graph of maximum degree 22.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000741/pdfft?md5=b5bdf1f35e156e3581f5a8ffea761652&pid=1-s2.0-S0095895624000741-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000741","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A graph U is universal for a graph class CU, if every GC is a minor of U. We prove the existence or absence of universal graphs in several natural graph classes, including graphs component-wise embeddable into a surface, and graphs forbidding K5, or K3,3, or K as a minor. We prove the existence of uncountably many minor-closed classes of countable graphs that do not have a universal element.

Some of our results and questions may be of interest from the finite graph perspective. In particular, one of our side-results is that every K5-minor-free graph is a minor of a K5-minor-free graph of maximum degree 22.

关于具有小通用元素的图类
如果每个 G∈C 都是 U 的次要元素,那么对于图类 C∋U,图 U 就是普遍图。我们证明了几个自然图类中普遍图的存在与否,包括可分量嵌入曲面的图,以及禁止 K5、K3,3 或 K∞ 作为次要元素的图。我们证明了存在着不可计数的、没有普遍元素的可数图的小封闭类。特别是,我们的一个附带结果是,每个无 K5 次要图都是最大阶数为 22 的无 K5 次要图的次要图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信