EPPA 图表数量

IF 1.2 1区 数学 Q1 MATHEMATICS
David Bradley-Williams , Peter J. Cameron , Jan Hubička , Matěj Konečný
{"title":"EPPA 图表数量","authors":"David Bradley-Williams ,&nbsp;Peter J. Cameron ,&nbsp;Jan Hubička ,&nbsp;Matěj Konečný","doi":"10.1016/j.jctb.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>If <em>G</em> is a graph, <em>A</em> and <em>B</em> its induced subgraphs, and <span><math><mi>f</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></math></span> an isomorphism, we say that <em>f</em> is a <em>partial automorphism</em> of <em>G</em>. In 1992, Hrushovski proved that graphs have the <em>extension property for partial automorphisms</em> (<em>EPPA</em>, also called the <em>Hrushovski property</em>), that is, for every finite graph <em>G</em> there is a finite graph <em>H</em>, an <em>EPPA-witness</em> for <em>G</em>, such that <em>G</em> is an induced subgraph of <em>H</em> and every partial automorphism of <em>G</em> extends to an automorphism of <em>H</em>.</div><div>The <em>EPPA number</em> of a graph <em>G</em>, denoted by <span><math><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest number of vertices of an EPPA-witness for <em>G</em>, and we put <span><math><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi><mo>}</mo></math></span>. In this note we review the state of the area, prove several lower bounds (in particular, we show that <span><math><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></mfrac></math></span>, thereby identifying the correct base of the exponential) and pose many open questions. We also briefly discuss EPPA numbers of hypergraphs, directed graphs, and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EPPA numbers of graphs\",\"authors\":\"David Bradley-Williams ,&nbsp;Peter J. Cameron ,&nbsp;Jan Hubička ,&nbsp;Matěj Konečný\",\"doi\":\"10.1016/j.jctb.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>If <em>G</em> is a graph, <em>A</em> and <em>B</em> its induced subgraphs, and <span><math><mi>f</mi><mo>:</mo><mi>A</mi><mo>→</mo><mi>B</mi></math></span> an isomorphism, we say that <em>f</em> is a <em>partial automorphism</em> of <em>G</em>. In 1992, Hrushovski proved that graphs have the <em>extension property for partial automorphisms</em> (<em>EPPA</em>, also called the <em>Hrushovski property</em>), that is, for every finite graph <em>G</em> there is a finite graph <em>H</em>, an <em>EPPA-witness</em> for <em>G</em>, such that <em>G</em> is an induced subgraph of <em>H</em> and every partial automorphism of <em>G</em> extends to an automorphism of <em>H</em>.</div><div>The <em>EPPA number</em> of a graph <em>G</em>, denoted by <span><math><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest number of vertices of an EPPA-witness for <em>G</em>, and we put <span><math><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>:</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi><mo>}</mo></math></span>. In this note we review the state of the area, prove several lower bounds (in particular, we show that <span><math><mrow><mi>eppa</mi></mrow><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><mfrac><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt></mrow></mfrac></math></span>, thereby identifying the correct base of the exponential) and pose many open questions. We also briefly discuss EPPA numbers of hypergraphs, directed graphs, and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-free graphs.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000820\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000820","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果 G 是一个图,A 和 B 是它的诱导子图,f:A→B 是同构,我们就说 f 是 G 的部分自动形。1992 年,赫鲁晓夫斯基证明了图具有部分自动态的扩展性质(EPPA,又称赫鲁晓夫斯基性质),即对于每个有限图 G,都有一个有限图 H(G 的 EPPA 见证),使得 G 是 H 的诱导子图,并且 G 的每个部分自动态都扩展为 H 的一个自动态。图 G 的 EPPA 数(用 eppa(G) 表示)是 G 的 EPPA 证图的最小顶点数,我们将 eppa(n)=max{eppa(G):|G|=n} 放为 eppa(n)=max{eppa(G):|G|=n}。在本说明中,我们回顾了这一领域的现状,证明了几个下界(特别是,我们证明了 eppa(n)≥2nn ,从而确定了指数的正确基数),并提出了许多开放性问题。我们还简要讨论了超图、有向图和无 Kk 图的 EPPA 数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPPA numbers of graphs
If G is a graph, A and B its induced subgraphs, and f:AB an isomorphism, we say that f is a partial automorphism of G. In 1992, Hrushovski proved that graphs have the extension property for partial automorphisms (EPPA, also called the Hrushovski property), that is, for every finite graph G there is a finite graph H, an EPPA-witness for G, such that G is an induced subgraph of H and every partial automorphism of G extends to an automorphism of H.
The EPPA number of a graph G, denoted by eppa(G), is the smallest number of vertices of an EPPA-witness for G, and we put eppa(n)=max{eppa(G):|G|=n}. In this note we review the state of the area, prove several lower bounds (in particular, we show that eppa(n)2nn, thereby identifying the correct base of the exponential) and pose many open questions. We also briefly discuss EPPA numbers of hypergraphs, directed graphs, and Kk-free graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信