Volume rigidity and algebraic shifting

IF 1.2 1区 数学 Q1 MATHEMATICS
Denys Bulavka , Eran Nevo , Yuval Peled
{"title":"Volume rigidity and algebraic shifting","authors":"Denys Bulavka ,&nbsp;Eran Nevo ,&nbsp;Yuval Peled","doi":"10.1016/j.jctb.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>We study the generic volume-rigidity of <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional simplicial complexes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, and show that the volume-rigidity of a complex can be identified in terms of its exterior shifting. In addition, we establish the volume-rigidity of triangulations of several 2-dimensional surfaces and prove that, in all dimensions &gt;1, volume-rigidity is <em>not</em> characterized by a corresponding hypergraph sparsity property.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"170 ","pages":"Pages 189-202"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000819","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the generic volume-rigidity of (d1)-dimensional simplicial complexes in Rd1, and show that the volume-rigidity of a complex can be identified in terms of its exterior shifting. In addition, we establish the volume-rigidity of triangulations of several 2-dimensional surfaces and prove that, in all dimensions >1, volume-rigidity is not characterized by a corresponding hypergraph sparsity property.
体积刚性和代数移动
我们研究了 Rd-1 中 (d-1)-dimensional 简单复数的一般体积刚度,并证明复数的体积刚度可以通过其外部移动来确定。此外,我们还建立了几个二维曲面三角形的体积刚度,并证明在所有维数>1中,体积刚度并不以相应的超图稀疏性为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信