{"title":"Trees with many leaves in tournaments","authors":"Alistair Benford , Richard Montgomery","doi":"10.1016/j.jctb.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Sumner's universal tournament conjecture states that every <span><math><mo>(</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>-vertex tournament should contain a copy of every <em>n</em>-vertex oriented tree. If we know the number of leaves of an oriented tree, or its maximum degree, can we guarantee a copy of the tree with fewer vertices in the tournament? Due to work initiated by Häggkvist and Thomason (for number of leaves) and Kühn, Mycroft and Osthus (for maximum degree), it is known that improvements can be made over Sumner's conjecture in some cases, and indeed sometimes an <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-vertex tournament may be sufficient.</div><div>In this paper, we give new results on these problems. Specifically, we show<ul><li><span>i)</span><span><div>for every <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, there exists <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span> such that, whenever <span><math><mi>n</mi><mo>⩾</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, every <span><math><mo>(</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo>)</mo><mi>n</mi><mo>+</mo><mi>k</mi><mo>)</mo></math></span>-vertex tournament contains a copy of every <em>n</em>-vertex oriented tree with <em>k</em> leaves, and</div></span></li><li><span>ii)</span><span><div>for every <span><math><mi>α</mi><mo>></mo><mn>0</mn></math></span>, there exists <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span> such that, whenever <span><math><mi>n</mi><mo>⩾</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, every <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>α</mi><mo>)</mo><mi>n</mi></math></span>-vertex tournament contains a copy of every <em>n</em>-vertex oriented tree with maximum degree <span><math><mi>Δ</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>⩽</mo><mi>c</mi><mi>n</mi></math></span>.</div></span></li></ul> Our first result gives an asymptotic form of a conjecture by Havet and Thomassé, while the second improves a result of Mycroft and Naia which applies to trees with polylogarithmic maximum degree.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000844","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sumner's universal tournament conjecture states that every -vertex tournament should contain a copy of every n-vertex oriented tree. If we know the number of leaves of an oriented tree, or its maximum degree, can we guarantee a copy of the tree with fewer vertices in the tournament? Due to work initiated by Häggkvist and Thomason (for number of leaves) and Kühn, Mycroft and Osthus (for maximum degree), it is known that improvements can be made over Sumner's conjecture in some cases, and indeed sometimes an -vertex tournament may be sufficient.
In this paper, we give new results on these problems. Specifically, we show
i)
for every , there exists such that, whenever , every -vertex tournament contains a copy of every n-vertex oriented tree with k leaves, and
ii)
for every , there exists and such that, whenever , every -vertex tournament contains a copy of every n-vertex oriented tree with maximum degree .
Our first result gives an asymptotic form of a conjecture by Havet and Thomassé, while the second improves a result of Mycroft and Naia which applies to trees with polylogarithmic maximum degree.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.