有序均匀匹配的 Erdős-Szekeres 型定理

IF 1.2 1区 数学 Q1 MATHEMATICS
Andrzej Dudek , Jarosław Grytczuk , Andrzej Ruciński
{"title":"有序均匀匹配的 Erdős-Szekeres 型定理","authors":"Andrzej Dudek ,&nbsp;Jarosław Grytczuk ,&nbsp;Andrzej Ruciński","doi":"10.1016/j.jctb.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>For <span><math><mi>r</mi><mo>,</mo><mi>n</mi><mo>⩾</mo><mn>2</mn></math></span>, an ordered <em>r</em>-uniform matching of size <em>n</em> is an <em>r</em>-uniform hypergraph on a linearly ordered vertex set <em>V</em>, with <span><math><mo>|</mo><mi>V</mi><mo>|</mo><mo>=</mo><mi>r</mi><mi>n</mi></math></span>, consisting of <em>n</em> pairwise disjoint edges. There are <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>r</mi></mrow></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> different ways two edges may intertwine, called here patterns. Among them we identify <span><math><msup><mrow><mn>3</mn></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> collectable patterns <em>P</em>, which have the potential of appearing in arbitrarily large quantities called <em>P</em>-cliques.</div><div>We prove an Erdős-Szekeres type result guaranteeing in <em>every</em> ordered <em>r</em>-uniform matching the presence of a <em>P</em>-clique of a prescribed size, for <em>some</em> collectable pattern <em>P</em>. In particular, in the diagonal case, one of the <em>P</em>-cliques must be of size <span><math><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span>. In addition, for <em>each</em> collectable pattern <em>P</em> we show that the largest size of a <em>P</em>-clique in a <em>random</em> ordered <em>r</em>-uniform matching of size <em>n</em> is, with high probability, <span><math><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erdős-Szekeres type theorems for ordered uniform matchings\",\"authors\":\"Andrzej Dudek ,&nbsp;Jarosław Grytczuk ,&nbsp;Andrzej Ruciński\",\"doi\":\"10.1016/j.jctb.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For <span><math><mi>r</mi><mo>,</mo><mi>n</mi><mo>⩾</mo><mn>2</mn></math></span>, an ordered <em>r</em>-uniform matching of size <em>n</em> is an <em>r</em>-uniform hypergraph on a linearly ordered vertex set <em>V</em>, with <span><math><mo>|</mo><mi>V</mi><mo>|</mo><mo>=</mo><mi>r</mi><mi>n</mi></math></span>, consisting of <em>n</em> pairwise disjoint edges. There are <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mn>2</mn><mi>r</mi></mrow></mtd></mtr><mtr><mtd><mi>r</mi></mtd></mtr></mtable><mo>)</mo></mrow></math></span> different ways two edges may intertwine, called here patterns. Among them we identify <span><math><msup><mrow><mn>3</mn></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> collectable patterns <em>P</em>, which have the potential of appearing in arbitrarily large quantities called <em>P</em>-cliques.</div><div>We prove an Erdős-Szekeres type result guaranteeing in <em>every</em> ordered <em>r</em>-uniform matching the presence of a <em>P</em>-clique of a prescribed size, for <em>some</em> collectable pattern <em>P</em>. In particular, in the diagonal case, one of the <em>P</em>-cliques must be of size <span><math><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>r</mi></mrow></msup></mrow></msup><mo>)</mo></mrow></math></span>. In addition, for <em>each</em> collectable pattern <em>P</em> we show that the largest size of a <em>P</em>-clique in a <em>random</em> ordered <em>r</em>-uniform matching of size <em>n</em> is, with high probability, <span><math><mi>Θ</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>r</mi></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000832\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000832","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 r,n⩾2,大小为 n 的有序 r-Uniform 匹配是线性有序顶点集 V 上的 r-Uniform 超图,|V|=rn,由 n 条成对不相交的边组成。两条边有 12(2rr) 种不同的交织方式,在此称为模式。我们证明了 Erdős-Szekeres 类型的结果,即对于某个可收集模式 P,保证在每个有序 r-uniform 匹配中存在规定大小的 P-clique。此外,对于每个可收集模式 P,我们证明在大小为 n 的随机有序 r-uniform 匹配中,P-clique 的最大大小很有可能是 Θ(n1/r)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Erdős-Szekeres type theorems for ordered uniform matchings
For r,n2, an ordered r-uniform matching of size n is an r-uniform hypergraph on a linearly ordered vertex set V, with |V|=rn, consisting of n pairwise disjoint edges. There are 12(2rr) different ways two edges may intertwine, called here patterns. Among them we identify 3r1 collectable patterns P, which have the potential of appearing in arbitrarily large quantities called P-cliques.
We prove an Erdős-Szekeres type result guaranteeing in every ordered r-uniform matching the presence of a P-clique of a prescribed size, for some collectable pattern P. In particular, in the diagonal case, one of the P-cliques must be of size Ω(n31r). In addition, for each collectable pattern P we show that the largest size of a P-clique in a random ordered r-uniform matching of size n is, with high probability, Θ(n1/r).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信