{"title":"Nuclear membrane: A key potential therapeutic target for lipid metabolism","authors":"Min Zeng , Longgui Chen , YaZhu Wang","doi":"10.1016/j.pbiomolbio.2024.10.002","DOIUrl":"10.1016/j.pbiomolbio.2024.10.002","url":null,"abstract":"<div><div>Lipid homeostasis plays a pivotal role in cellular growth, necessitating the engagement of numerous lipid metabolism genes and the cohesive functioning of organelles. While the nucleus is traditionally recognized for its genetic roles, emerging evidence highlights its significant contribution to lipid homeostasis maintenance. Certain nuclear membrane proteins or associated proteins have the capacity to directly catalyze lipid synthesis or modification processes. Mutations in the genes encoding these proteins can lead to disrupted lipid metabolism, contributing to a spectrum of metabolic disorders. This article provides a comprehensive reviews of the investigations exploring the interplay between nuclear membrane proteins and lipid metabolism. Additionally, it delves into the heterogeneity of the nuclear membrane, positioning it as a novel therapeutic target for managing metabolic disorders and mitigating adverse drug reactions.</div></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"194 ","pages":"Pages 10-15"},"PeriodicalIF":3.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehran Bahrami , Hanieh Khonakdar , Armaghan Moghaddam , Saba Nemati Mahand , Poorya Esmaili Bambizi , Benjamin Kruppke , Hossein Ali Khonakdar
{"title":"A review of the current status and future prospects of the bone remodeling process: Biological and mathematical perspectives","authors":"Mehran Bahrami , Hanieh Khonakdar , Armaghan Moghaddam , Saba Nemati Mahand , Poorya Esmaili Bambizi , Benjamin Kruppke , Hossein Ali Khonakdar","doi":"10.1016/j.pbiomolbio.2024.10.001","DOIUrl":"10.1016/j.pbiomolbio.2024.10.001","url":null,"abstract":"<div><div>This review dives into the complex dynamics of bone remodeling, combining biological insights with mathematical perspectives to better understand this fundamental aspect of skeletal health. Bone, being a crucial part of our body, constantly renews itself, and with the growing number of individuals facing bone-related issues, research in this field is vital. In this review, we categorized and classified most common mathematical models used to simulate the mechanical behavior of bone under different loading and health conditions, shedding light on the evolving landscape of bone biology. While current models have effectively captured the essence of healthy bone remodeling, the ever-expanding knowledge in bone biology suggests an update in mathematical methods. Knowing the role of the skeleton in whole-body physiology, and looking at the recent discoveries about activities of bone cells emphasize the urgency of refining our mathematical descriptions of the bone remodeling process. The underexplored impact of bone diseases like osteoporosis, Paget's disease, or breast cancer on bone remodeling also points to the need for intensified research into diverse disease types and their unique effects on bone health. By reviewing a range of bone remodeling models, we show the necessity for tailor-made mathematical models to decipher their roots and enhance patient treatment strategies. Collaboration among scientists from various domains is pivotal to surmount these challenges, ensuring improved accuracy and applicability of mathematical models. Ultimately, this effort aims to deepen our understanding of bone remodeling processes and their broader implications for diverse health conditions.</div></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"194 ","pages":"Pages 16-33"},"PeriodicalIF":3.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulan Shi , Fenghua Qu , Shiyun Zeng , Xinchen Wang , Yuting Liu , Qirui Zhang , Ding Yuan , Chengfu Yuan
{"title":"Targeting long non-coding RNA H19 as a therapeutic strategy for liver disease","authors":"Yulan Shi , Fenghua Qu , Shiyun Zeng , Xinchen Wang , Yuting Liu , Qirui Zhang , Ding Yuan , Chengfu Yuan","doi":"10.1016/j.pbiomolbio.2024.09.005","DOIUrl":"10.1016/j.pbiomolbio.2024.09.005","url":null,"abstract":"<div><div>The liver has the function of regulating metabolic equilibrium in the human body, and the majority of liver disorders are chronic conditions that can significantly impair health. Recent research has highlighted the critical role of long noncoding RNAs (lncRNAs) in liver disease pathogenesis. LncRNA H19, an endogenous noncoding single-stranded RNA, exerts its influence through epigenetic modifications and affects various biological processes. This review focuses on elucidating the key molecular mechanisms underlying the regulation of H19 during the progression and advancement of liver diseases, aiming to highlight H19 as a potential therapeutic target and provide profound insights into the molecular underpinnings of liver pathologies.</div></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"194 ","pages":"Pages 1-9"},"PeriodicalIF":3.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuxian Ding , Jinhua Li , Yanwen Fang , Xingjie Zhuo , Lili Gu , Xinyue Zhang , Yuanxiao Yang , Min Wei , Zhongcai Liao , Qin Li
{"title":"Research progress on the effects and mechanisms of magnetic field on neurodegenerative diseases","authors":"Shuxian Ding , Jinhua Li , Yanwen Fang , Xingjie Zhuo , Lili Gu , Xinyue Zhang , Yuanxiao Yang , Min Wei , Zhongcai Liao , Qin Li","doi":"10.1016/j.pbiomolbio.2024.09.004","DOIUrl":"10.1016/j.pbiomolbio.2024.09.004","url":null,"abstract":"<div><p>With the progress of modern science and technology, magnetic therapy technology develops rapidly, and many types of magnetic therapy methods continue to emerge, making magnetic therapy one of the main techniques of physiotherapy. With the continuous development of magnetic field research and clinical applications, magnetic therapy, as a non-invasive brain stimulation therapy technology, has attracted much attention due to its potential in the treatment of motor dysfunction, cognitive impairment and speech disorders in patients with neurodegenerative diseases. However, the role of magnetic fields in the prognosis and treatment of neurodegenerative diseases and their mechanisms remain largely unexplored. In this paper, the therapeutic effect and neuroprotective mechanism of the magnetic field on neurodegenerative diseases are reviewed, and the new magnetic therapy techniques are also summarized. Although the neuroprotective mechanism of magnetic field cannot be fully elaborated, it is helpful to promote the application of magnetic field in neurodegenerative diseases and provide a new theoretical basis for the related magnetic field research in the later period.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"193 ","pages":"Pages 35-45"},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean Lucas Benvenuti , Pedro Lenz Casa , Fernanda Pessi de Abreu , Gustavo Sganzerla Martinez , Scheila de Avila e Silva
{"title":"From straight to curved: A historical perspective of DNA shape","authors":"Jean Lucas Benvenuti , Pedro Lenz Casa , Fernanda Pessi de Abreu , Gustavo Sganzerla Martinez , Scheila de Avila e Silva","doi":"10.1016/j.pbiomolbio.2024.09.002","DOIUrl":"10.1016/j.pbiomolbio.2024.09.002","url":null,"abstract":"<div><p>DNA is the macromolecule responsible for storing the genetic information of a cell and it has intrinsic properties such as deformability, stability and curvature. DNA Curvature plays an important role in gene transcription and, consequently, in the subsequent production of proteins, a fundamental process of cells. With recent advances in bioinformatics and theoretical biology, it became possible to analyze and understand the involvement of DNA Curvature as a discriminatory characteristic of gene-promoting regions. These regions act as sites where RNAp (ribonucleic acid-polymerase) binds to initiate transcription. This review aims to describe the formation of Curvature, as well as highlight its importance in predicting promoters. Furthermore, this article provides the potential of DNA Curvature as a distinguishing feature for promoter prediction tools, as well as outlining the calculation procedures that have been described by other researchers. This work may support further studies directed towards the enhancement of promoter prediction software.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"193 ","pages":"Pages 46-54"},"PeriodicalIF":3.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142274550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Innokenty M. Mokhosoev , Dmitry V. Astakhov , Alexander A. Terentiev , Nurbubu T. Moldogazieva
{"title":"Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response","authors":"Innokenty M. Mokhosoev , Dmitry V. Astakhov , Alexander A. Terentiev , Nurbubu T. Moldogazieva","doi":"10.1016/j.pbiomolbio.2024.09.003","DOIUrl":"10.1016/j.pbiomolbio.2024.09.003","url":null,"abstract":"<div><p>Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"193 ","pages":"Pages 19-34"},"PeriodicalIF":3.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRISPR-based electrochemical biosensors for animal health: Recent advances","authors":"Anil Gattani , Sanju Mandal , Aditya Agrawal , Pragati Patel , Anand Kumar Jain , Purnima Singh , Akshay Garg , Aditya Mishra","doi":"10.1016/j.pbiomolbio.2024.09.001","DOIUrl":"10.1016/j.pbiomolbio.2024.09.001","url":null,"abstract":"<div><p>Animal diseases are a major concern to animal welfare, human health and the global economy. Early detection, prevention and control of these animal diseases are crucial to ensure sustainability of livestock sector, to reduce farm losses and protecting public health. Points of care (POC) devices are small, portable instruments that provide rapid results thus reduce the risk of disease transmission and enable early intervention. CRISPR based diagnostics offer more accurate and efficient solution for monitoring animal health due to their quick response, can detect very low level of pathogenic organism or disease markers and specificity. These diagnostics are particularly useful in the in area with limited resources or access to common diagnostic methods, especially in developing countries. The ability of electrochemical sensors to detect accurately very low analyte concentration makes them suitable for POC diagnostics and field application. CRISPR base electrochemical biosensors show great potential in revolutionizing disease detection and diagnosis including animal health. However, challenges, such as achieving selectivity and sensitivity, need to be addressed to enhance the competitiveness of these biosensors. Currently, most CRISPR based bioassay research focuses on nucleic acid target detection, but researchers exploring to monitor small organic/inorganic non-nucleic acid molecules like toxins and proteins. Emerging diagnostics would be centered on CRISPR-Cas system will offer great potential as an accurate, specific and effective means to identify microorganism, virus, toxins, small molecules, peptides and nucleic acid related to various animal health disorders particularly when integrated into electrochemical biosensing platform.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"193 ","pages":"Pages 7-18"},"PeriodicalIF":3.2,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diagnostic use of circulating cells and sub-cellular bio-particles","authors":"Atakan Tevlek","doi":"10.1016/j.pbiomolbio.2024.08.002","DOIUrl":"10.1016/j.pbiomolbio.2024.08.002","url":null,"abstract":"<div><p>In the bloodstream or other physiological fluids, \"circulating cells and sub-cellular bio-particles\" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"192 ","pages":"Pages 19-36"},"PeriodicalIF":3.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological evolution is dead in the water of Darwin's warm little pond","authors":"Olen R. Brown , David A. Hullender","doi":"10.1016/j.pbiomolbio.2024.08.003","DOIUrl":"10.1016/j.pbiomolbio.2024.08.003","url":null,"abstract":"<div><p>The origin of life and its evolution are generally taught as occurring by abiogenesis and gene-centric neo-Darwinism. Significant biological evolutionary changes are preserved and given direction (descent with modification) by Darwin's (Spencer's) natural selection by survival of the fittest. Only survival of the fittest (adapted/broadened) is available to provide a ‘naturalistic’ direction to prefer one outcome/reaction over another for abiogenesis. Thus, assembly of first life must reach some threshold (the first minimal cell) before ‘survival of the fittest’ (the only naturalistic explanation available) can function as Darwin proposed for biological change. We propose the novel concept that the requirement for co-origination of vitamins with enzymes is a fundamental, but overlooked, problem that survival of the fittest (even broadly redefined beyond Darwin) cannot reasonably overcome. We support this conclusion with probability calculations. We focus on the stage of evolution involving the transition from non-life to the first, minimal living cell. We show that co-origination of required biochemical processes makes the origin of life probabilistically absurdly improbable even when all assumptions are chosen to unreasonably favor evolutionary theories.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"193 ","pages":"Pages 1-6"},"PeriodicalIF":3.2,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in the study of glucose metabolism in relation to tumor progression and treatment","authors":"Meng Zhao , Yu-long Chen , Lian-He Yang","doi":"10.1016/j.pbiomolbio.2024.08.001","DOIUrl":"10.1016/j.pbiomolbio.2024.08.001","url":null,"abstract":"<div><p>Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"192 ","pages":"Pages 11-18"},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610724000762/pdfft?md5=50cba58d49676ad569320a7cbef073d5&pid=1-s2.0-S0079610724000762-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}