Chenxiao Zhen , Gejing Zhang , Shenghang Wang , Jianping Wang , Yanwen Fang , Peng Shang
{"title":"Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism","authors":"Chenxiao Zhen , Gejing Zhang , Shenghang Wang , Jianping Wang , Yanwen Fang , Peng Shang","doi":"10.1016/j.pbiomolbio.2024.03.001","DOIUrl":"10.1016/j.pbiomolbio.2024.03.001","url":null,"abstract":"<div><p>The emergence, evolution, and spread of life on Earth have all occurred in the geomagnetic field, and its extensive biological effects on living organisms have been documented. The charged characteristics of metal ions in biological fluids determine that they are affected by electromagnetic field forces, thus affecting life activities. Iron metabolism, as one of the important metal metabolic pathways, keeps iron absorption and excretion in a relatively balanced state, and this process is precisely and completely controlled. It is worth paying attention to how the iron metabolism process of living organisms is changed when exposed to electromagnetic fields. In this paper, the processes of iron absorption, storage and excretion in animals (mammals, fish, arthropods), plants and microorganisms exposed to electromagnetic field were summarized in detail as far as possible, in order to discover the regulation of iron metabolism by electromagnetic field. Studies and data on the effects of electromagnetic field exposure on iron metabolism in organisms show that exposure profiles vary widely across species and cell lines. This process involves a variety of factors, and the complexity of the results is not only related to the magnetic flux density/operating frequency/exposure time and the heterogeneity of the observed object. A systematic review of the biological regulation of iron metabolism by electromagnetic field exposure will not only contributes to a more comprehensive understanding of its biological effects and mechanism, but also is necessary to improve human awareness of the health related risks of electromagnetic field exposure.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 43-54"},"PeriodicalIF":3.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610724000233/pdfft?md5=18cb3adb31284906ec25b6d5f9d18432&pid=1-s2.0-S0079610724000233-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The synchronic, diachronic cell as the holism of consciousness","authors":"John S. Torday","doi":"10.1016/j.pbiomolbio.2024.02.006","DOIUrl":"10.1016/j.pbiomolbio.2024.02.006","url":null,"abstract":"<div><p>The cell is both synchronic and diachronic, based on ontogeny and phylogeny, respectively. As experimental evidence for this holism, absent gravitational force, differentiated lung and bone cells devolve, losing their phenotypes, losing their evolutionary status, reverting to their nonlocal status. Thus, when evolution is seen as serial homeostasis, it is homologous with Quantum Entanglement as the nonlocal means of maintaining homeostatic balance between particles. This monadic perspective on consciousness is one-hundred and eighty degrees out of synch with the conventional way of thinking about consciousness as a diad, or mind and brain. There have been many attempts to explain consciousness, virtually all of them based on the brain as mind. The working hypothesis is that consciousness is a holism constituted by the unicell, the lipid cell membrane forming a barrier between inside and outside of the cell's environment as a topology. Conceptually, both the unicell and ‘two hands clapping’ are holisms, but because the cell is constituted by the ambiguity of negative entropy, and ‘one hand clapping’ requires two hands, they are both pseudo-holisms, constantly striving to be whole again. In the case of the cell, it is incomplete in the sense that there are factors in the ever-changing environment that can homeostatically complete it. That process results in biochemical modification of specific DNA codes in the egg or sperm so that the offspring is able to adapt in subsequent generations epigenetically. The opportunity to trace the evolution of the breath from humans to fish opens up to the further revelation of the interplay between evolution and geological change, tracing it back to invertebrates, sponges, and ultimately to unicellular organisms. And therein is evidence that the Cosmos itself ‘breathes’, providing the ultimate celestial fundament for this trail of holisms.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 19-23"},"PeriodicalIF":3.8,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The quantum cell","authors":"John S. Torday","doi":"10.1016/j.pbiomolbio.2024.02.003","DOIUrl":"10.1016/j.pbiomolbio.2024.02.003","url":null,"abstract":"<div><p>There is a consensus that we are conscious of something greater than ourselves, as if we are derived from some other primordial set of principles. Classical or Newtonian physics is based on the Laws of Nature. Conversely, in a recent series of articles, it has been hypothesized that the cell was formed from lipid molecules submerged in the primordial ocean that covered the earth 100 million years after it formed. Since lipids are amphiphiles, with both a positively- and negatively-charged pole, the negatively-charged pole is miscible in water. Under the influence of earth's gravity, the lipid molecules stand up perpendicularly to the surface of the water, packing together until the negative charge neutralizes the Van der Waals force for surface tension, causing the lipid molecules to ‘leap’ into the micellar form as a sphere with a semi-permeable membrane. Particles in the water freely enter and exit such spheres based on mass action. Over time such protocells evolved Symbiogenesis, encountering factors that posed existential threats, assimilating them to form physiology to maintain homeostatic control. Importantly, when differentiated lung or bone cells are exposed to zero gravity, they lose their phenotypic identity in their evolved state, which has been interpreted as transiting from local to non-local consciousness.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 24-30"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139941252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer","authors":"Jing Zhong, Yan Tang","doi":"10.1016/j.pbiomolbio.2024.02.005","DOIUrl":"10.1016/j.pbiomolbio.2024.02.005","url":null,"abstract":"<div><p>According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming “ROS- HIF-1α-ROS” cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 1-18"},"PeriodicalIF":3.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139918105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Karami Fath , Samaneh Mohammad Bagherzadeh Torbati , Vahid Saqagandomabadi , Omid Yousefi Afshar , Mohammad Khalilzad , Sara Abedi , Afshin Moliani , Danyal Daneshdoust , Ghasem Barati
{"title":"The therapeutic effect of MSCs and their extracellular vesicles on neuroblastoma","authors":"Mohsen Karami Fath , Samaneh Mohammad Bagherzadeh Torbati , Vahid Saqagandomabadi , Omid Yousefi Afshar , Mohammad Khalilzad , Sara Abedi , Afshin Moliani , Danyal Daneshdoust , Ghasem Barati","doi":"10.1016/j.pbiomolbio.2024.02.004","DOIUrl":"10.1016/j.pbiomolbio.2024.02.004","url":null,"abstract":"<div><p>Neuroblastoma is a common inflammatory-related cancer during infancy. Standard treatment modalities including surgical interventions, high-dose chemotherapy, radiotherapy, and immunotherapy are not able to increase survival rate and reduce tumor relapse in high-risk patients. Mesenchymal stem cells (MSCs) are known for their tumor-targeting and immunomodulating properties. MSCs could be engineered to express anticancer agents (i.e., growth factors, cytokines, pro-apoptotic agents) or deliver oncolytic viruses in the tumor microenvironment. As many functions of MSCs are mediated through their secretome, researchers have tried to use extracellular vesicles (EVs) from MSCs for targeted therapy of neuroblastoma. Here, we reviewed the studies to figure out whether the use of MSCs could be worthwhile in neuroblastoma therapy or not. Native MSCs have shown a promoting or inhibiting role in cancers including neuroblastoma. Therefore, MSCs are proposed as a vehicle to deliver anticancer agents such as oncolytic viruses to the neuroblastoma tumor microenvironment. Although modified MSCs or their EVs have been shown to suppress the tumorigenesis of neuroblastoma, further pre-clinical and clinical studies are required to come to a conclusion.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"187 ","pages":"Pages 51-60"},"PeriodicalIF":3.8,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Responses to commentaries on “The gene: An appraisal”","authors":"Keith Baverstock","doi":"10.1016/j.pbiomolbio.2024.02.002","DOIUrl":"10.1016/j.pbiomolbio.2024.02.002","url":null,"abstract":"<div><p>The central conclusions of “The Gene: An Appraisal” are that genetic variance does not underpin biological evolution, and, therefore, that genes are not Mendel's units of inheritance. In this response, I will address the criticisms I have received via commentaries on that paper by defending the following statements:</p><p>1. Epistasis does not explain the power-law fitness profile of the Long-Term Evolution Experiment (LTEE). The data from the evolution of <em>natural systems</em> displays the power-law form ubiquitously. Epistasis plays no role in evolution.</p><p>2. The common characteristics of living things (natural systems) are described by the principle of least action in de Maupertuis's original form, which is synonymous with the 2nd law of thermodynamics and Newton's 2nd law of motion in its complete form, i.e., F = dp/dt. Organisms strive to achieve free energy balance with their environments.</p><p>3. Based on an appraisal of the scientific environment between 1880 and 1911, I conclude that Johannsen's genotype conception was perhaps, the only option available to him.</p><p>4. The power-law fitness profile of the LTEE falsifies Fisher's Genetical Theory of Natural Selection, Johannsen's genotype conception, and the idea that ‘Darwinian evolution’ is an exception to the generic thermodynamic process of evolution in natural systems.</p><p>5. The use of the technique of genome-wide association to identify the causes and the likelihoods of inherited common diseases and behavioural traits is a ‘wild goose chase’ because genes are not the units of inheritance.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 31-42"},"PeriodicalIF":3.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S007961072400018X/pdfft?md5=e7aa3c3acf34cfb11fa23fbe39cdab86&pid=1-s2.0-S007961072400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William B. Miller Jr , František Baluška , Arthur S. Reber , Predrag Slijepčević
{"title":"Why death and aging ? All memories are imperfect","authors":"William B. Miller Jr , František Baluška , Arthur S. Reber , Predrag Slijepčević","doi":"10.1016/j.pbiomolbio.2024.02.001","DOIUrl":"10.1016/j.pbiomolbio.2024.02.001","url":null,"abstract":"<div><p>Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"187 ","pages":"Pages 21-35"},"PeriodicalIF":3.8,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The holism of evolution as consciousness","authors":"John S. Torday","doi":"10.1016/j.pbiomolbio.2024.01.004","DOIUrl":"10.1016/j.pbiomolbio.2024.01.004","url":null,"abstract":"<div><p>Quantum Entanglement has been hypothesized to mediate non-local consciousness, underlying which, empirically, is the force of gravity. Upon further reflection, the case can be made for ‘the breath’ as the physiologic trait that binds all of these properties together, offering further opportunity for hypothesis testing experimentation. Humans have inexplicably made extraordinary intellectual and technical advances within a relatively very short period of time, referred to as the ‘great leap forward’. It would be of great value if we could identify how and why we have evolved so rapidly. There is a holotropism that begins with the Big Bang that is centered on the homeostatic control of energy, perpetually referencing the First Principles of Physiology. “The Breath” is how and why our physiology has managed to perpetuate our species, and perhaps why the lung has been ‘over-engineered’ in order to facilitate the role of breathing in consciousness.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"187 ","pages":"Pages 5-8"},"PeriodicalIF":3.8,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139587581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A landscape of consciousness: Toward a taxonomy of explanations and implications","authors":"Robert Lawrence Kuhn","doi":"10.1016/j.pbiomolbio.2023.12.003","DOIUrl":"10.1016/j.pbiomolbio.2023.12.003","url":null,"abstract":"<div><p>Diverse explanations or theories of consciousness are arrayed on a roughly physicalist-to-nonphysicalist landscape of essences and mechanisms. Categories: Materialism Theories (philosophical, neurobiological, electromagnetic field, computational and informational, homeostatic and affective, embodied and enactive, relational, representational, language, phylogenetic evolution); Non-Reductive Physicalism; Quantum Theories; Integrated Information Theory; Panpsychisms; Monisms; Dualisms; Idealisms; Anomalous and Altered States Theories; Challenge Theories. There are many subcategories, especially for Materialism Theories. Each explanation is self-described by its adherents, critique is minimal and only for clarification, and there is no attempt to adjudicate among theories. The implications of consciousness explanations or theories are assessed with respect to: meaning/purpose/value (if any); AI consciousness; virtual immortality; and survival beyond death. A Landscape of Consciousness, I suggest, offers perspective.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"190 ","pages":"Pages 28-169"},"PeriodicalIF":3.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723001128/pdfft?md5=e1401856928d55a631d4e6e91b35ae72&pid=1-s2.0-S0079610723001128-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Promising application of pulsed electromagnetic fields on tissue repair and regeneration","authors":"Dan-bo Su, Zi-xu Zhao, Da-chuan Yin, Ya-jing Ye","doi":"10.1016/j.pbiomolbio.2024.01.003","DOIUrl":"10.1016/j.pbiomolbio.2024.01.003","url":null,"abstract":"<div><p>Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"187 ","pages":"Pages 36-50"},"PeriodicalIF":3.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}