Progress in Biophysics & Molecular Biology最新文献

筛选
英文 中文
Biology in the 21st century: Natural selection is cognitive selection 21 世纪的生物学:自然选择就是认知选择。
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-05-11 DOI: 10.1016/j.pbiomolbio.2024.05.001
William B. Miller Jr. , František Baluška , Arthur S. Reber , Predrag Slijepčević
{"title":"Biology in the 21st century: Natural selection is cognitive selection","authors":"William B. Miller Jr. ,&nbsp;František Baluška ,&nbsp;Arthur S. Reber ,&nbsp;Predrag Slijepčević","doi":"10.1016/j.pbiomolbio.2024.05.001","DOIUrl":"10.1016/j.pbiomolbio.2024.05.001","url":null,"abstract":"<div><p>Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"190 ","pages":"Pages 170-184"},"PeriodicalIF":3.8,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring gene regulation and biological processes in insects: Insights from omics data using gene regulatory network models 探索昆虫的基因调控和生物过程:利用基因调控网络模型从全微观数据中获得启示
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-04-09 DOI: 10.1016/j.pbiomolbio.2024.04.002
Fong Ting Chee , Sarahani Harun , Kauthar Mohd Daud , Suhaila Sulaiman , Nor Azlan Nor Muhammad
{"title":"Exploring gene regulation and biological processes in insects: Insights from omics data using gene regulatory network models","authors":"Fong Ting Chee ,&nbsp;Sarahani Harun ,&nbsp;Kauthar Mohd Daud ,&nbsp;Suhaila Sulaiman ,&nbsp;Nor Azlan Nor Muhammad","doi":"10.1016/j.pbiomolbio.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.pbiomolbio.2024.04.002","url":null,"abstract":"<div><p>Gene regulatory network (GRN) comprises complicated yet intertwined gene-regulator relationships. Understanding the GRN dynamics will unravel the complexity behind the observed gene expressions. Insect gene regulation is often complicated due to their complex life cycles and diverse ecological adaptations. The main interest of this review is to have an update on the current mathematical modelling methods of GRNs to explain insect science. Several popular GRN architecture models are discussed, together with examples of applications in insect science. In the last part of this review, each model is compared from different aspects, including network scalability, computation complexity, robustness to noise and biological relevancy.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"189 ","pages":"Pages 1-12"},"PeriodicalIF":3.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution 智能系统中的合作基因:进化中的包容性新合成
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-04-07 DOI: 10.1016/j.pbiomolbio.2024.04.001
Peter A. Corning
{"title":"Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution","authors":"Peter A. Corning","doi":"10.1016/j.pbiomolbio.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.pbiomolbio.2024.04.001","url":null,"abstract":"<div><p>For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"189 ","pages":"Pages 26-31"},"PeriodicalIF":3.8,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumour-regulatory role of long non-coding RNA HOXA-AS3 长非编码 RNA HOXA-AS3 的肿瘤调节作用
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-04-07 DOI: 10.1016/j.pbiomolbio.2024.04.003
Zhi Xiong Chong , Wan Yong Ho , Swee Keong Yeap
{"title":"Tumour-regulatory role of long non-coding RNA HOXA-AS3","authors":"Zhi Xiong Chong ,&nbsp;Wan Yong Ho ,&nbsp;Swee Keong Yeap","doi":"10.1016/j.pbiomolbio.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.pbiomolbio.2024.04.003","url":null,"abstract":"<div><p>Dysregulation of long non-coding RNA (lncRNA) HOXA-AS3 has been shown to contribute to the development of multiple cancer types. Several studies have presented the tumour-modulatory role or prognostic significance of this lncRNA in various kinds of cancer. Overall, HOXA-AS3 can act as a competing endogenous RNA (ceRNA) that inhibits the activity of seven microRNAs (miRNAs), including miR-29a-3p, miR-29 b-3p, miR-29c, miR-218–5p, miR-455–5p, miR-1286, and miR-4319. This relieves the downstream messenger RNA (mRNA) targets of these miRNAs from miRNA-mediated translational repression, allowing them to exert their effect in regulating cellular activities. Examples of the pathways regulated by lncRNA HOXA-AS3 and its associated downstream targets include the WNT/β-catenin and epithelial-to-mesenchymal transition (EMT) activities. Besides, HOXA-AS3 can interact with other cellular proteins like homeobox HOXA3 and HOXA6, influencing the oncogenic signaling pathways associated with these proteins. Generally, HOXA-AS3 is overexpressed in most of the discussed human cancers, making this lncRNA a potential candidate to diagnose cancer or predict the clinical outcomes of cancer patients. Hence, targeting HOXA-AS3 could be a new therapeutic approach to slowing cancer progression or as a potential biomarker and therapeutic target. A drawback of using lncRNA HOXA-AS3 as a biomarker or therapeutic target is that most of the studies that have reported the tumour-regulatory roles of lncRNA HOXA-AS3 are single observational, <em>in vitro</em>, or <em>in vivo</em> studies. More in-depth mechanistic and large-scale clinical trials must be conducted to confirm the tumour-modulatory roles of lncRNA HOXA-AS3 further. Besides, no lncRNA HOXA-AS3 inhibitor has been tested preclinically and clinically, and designing such an inhibitor is crucial as it may potentially slow cancer progression.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"189 ","pages":"Pages 13-25"},"PeriodicalIF":3.8,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hypothesis of teleological evolution, via endogenous acetylcholine, nitric oxide, and calmodulin pathways 通过内源性乙酰胆碱、一氧化氮和钙调素途径进行目的论进化的假说。
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-03-28 DOI: 10.1016/j.pbiomolbio.2024.03.003
Amelia Lewis
{"title":"A hypothesis of teleological evolution, via endogenous acetylcholine, nitric oxide, and calmodulin pathways","authors":"Amelia Lewis","doi":"10.1016/j.pbiomolbio.2024.03.003","DOIUrl":"10.1016/j.pbiomolbio.2024.03.003","url":null,"abstract":"<div><p>The Extended Evolutionary Synthesis (EES) addresses the issues in evolutionary biology which cannot be explained by neo-Darwinian theory. The EES paradigm recognises teleology and agency in living systems, and identifies that organisms can directly affect their evolutionary trajectory in a goal-directed manner, yet the physiological pathways via which this occurs remain unidentified. Here, I propose a physiological pathway via which organisms can alter their genotype and phenotype by making behavioural decisions with respect their activity levels, partitioning of resources either toward growth, defence against disease, or their behavioural response to stressors. Specifically, I hypothesize that agential, teleological decisions mediated by acetylcholine result in induced nitric oxide (NO) activity, which regulates metabolism, blood flow, and immune response. Nitric oxide, however, is also a key epigenetic molecule, being involved in DNA acetylation, methylation, and de-methylation. Further, NO alters the histone complexes which scaffold nuclear DNA strands, and is thus a good candidate in identifying a system which allows an organisms to make teleological genetic changes. The proposed mechanisms of inheritance of these genetic changes is via the paternal line, whereby epigenetic changes in the somatic Sertoli cells in animals are transcribed by mRNA and included in the germline cells – the male gametes. The microsporangium in plants, and the sporophore cells in fungi, meanwhile, are proposed to form similar systems in response to sensory detection of stressors. Whilst the hypothesis is presented as a simplified model for future testing, it opens new avenues for study in evolutionary biology.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 68-76"},"PeriodicalIF":3.8,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. 骨关节炎中失调的自噬:重新审视分子特征
IF 4.5 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-03-24 DOI: 10.1016/j.pbiomolbio.2024.03.004
Liang Liu, Jie Wang, Lu Liu, Wenling Shi, Huajie Gao, Lun Liu
{"title":"WITHDRAWN: The dysregulated autophagy in osteoarthritis: Revisiting molecular profile.","authors":"Liang Liu, Jie Wang, Lu Liu, Wenling Shi, Huajie Gao, Lun Liu","doi":"10.1016/j.pbiomolbio.2024.03.004","DOIUrl":"10.1016/j.pbiomolbio.2024.03.004","url":null,"abstract":"<p><p>This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.</p>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of photobiomodulation in accelerating bone repair 光生物调节在加速骨修复中的作用。
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-03-16 DOI: 10.1016/j.pbiomolbio.2024.03.002
Ping Lu , Jinfeng Peng , Jie Liu , Lili Chen
{"title":"The role of photobiomodulation in accelerating bone repair","authors":"Ping Lu ,&nbsp;Jinfeng Peng ,&nbsp;Jie Liu ,&nbsp;Lili Chen","doi":"10.1016/j.pbiomolbio.2024.03.002","DOIUrl":"10.1016/j.pbiomolbio.2024.03.002","url":null,"abstract":"<div><p>Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635–980 nm, the output power of 40–100 mW, and the energy density of less than 100 J/cm<sup>2</sup> are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from <em>in vivo</em> and <em>in vitro</em> studies and to standardize clinical trial protocols.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 55-67"},"PeriodicalIF":3.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism 电磁场调节生物体内的铁代谢:效应和机制综述
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-03-04 DOI: 10.1016/j.pbiomolbio.2024.03.001
Chenxiao Zhen , Gejing Zhang , Shenghang Wang , Jianping Wang , Yanwen Fang , Peng Shang
{"title":"Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism","authors":"Chenxiao Zhen ,&nbsp;Gejing Zhang ,&nbsp;Shenghang Wang ,&nbsp;Jianping Wang ,&nbsp;Yanwen Fang ,&nbsp;Peng Shang","doi":"10.1016/j.pbiomolbio.2024.03.001","DOIUrl":"10.1016/j.pbiomolbio.2024.03.001","url":null,"abstract":"<div><p>The emergence, evolution, and spread of life on Earth have all occurred in the geomagnetic field, and its extensive biological effects on living organisms have been documented. The charged characteristics of metal ions in biological fluids determine that they are affected by electromagnetic field forces, thus affecting life activities. Iron metabolism, as one of the important metal metabolic pathways, keeps iron absorption and excretion in a relatively balanced state, and this process is precisely and completely controlled. It is worth paying attention to how the iron metabolism process of living organisms is changed when exposed to electromagnetic fields. In this paper, the processes of iron absorption, storage and excretion in animals (mammals, fish, arthropods), plants and microorganisms exposed to electromagnetic field were summarized in detail as far as possible, in order to discover the regulation of iron metabolism by electromagnetic field. Studies and data on the effects of electromagnetic field exposure on iron metabolism in organisms show that exposure profiles vary widely across species and cell lines. This process involves a variety of factors, and the complexity of the results is not only related to the magnetic flux density/operating frequency/exposure time and the heterogeneity of the observed object. A systematic review of the biological regulation of iron metabolism by electromagnetic field exposure will not only contributes to a more comprehensive understanding of its biological effects and mechanism, but also is necessary to improve human awareness of the health related risks of electromagnetic field exposure.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 43-54"},"PeriodicalIF":3.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610724000233/pdfft?md5=18cb3adb31284906ec25b6d5f9d18432&pid=1-s2.0-S0079610724000233-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The synchronic, diachronic cell as the holism of consciousness 作为意识整体性的同步、异步细胞。
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-02-24 DOI: 10.1016/j.pbiomolbio.2024.02.006
John S. Torday
{"title":"The synchronic, diachronic cell as the holism of consciousness","authors":"John S. Torday","doi":"10.1016/j.pbiomolbio.2024.02.006","DOIUrl":"10.1016/j.pbiomolbio.2024.02.006","url":null,"abstract":"<div><p>The cell is both synchronic and diachronic, based on ontogeny and phylogeny, respectively. As experimental evidence for this holism, absent gravitational force, differentiated lung and bone cells devolve, losing their phenotypes, losing their evolutionary status, reverting to their nonlocal status. Thus, when evolution is seen as serial homeostasis, it is homologous with Quantum Entanglement as the nonlocal means of maintaining homeostatic balance between particles. This monadic perspective on consciousness is one-hundred and eighty degrees out of synch with the conventional way of thinking about consciousness as a diad, or mind and brain. There have been many attempts to explain consciousness, virtually all of them based on the brain as mind. The working hypothesis is that consciousness is a holism constituted by the unicell, the lipid cell membrane forming a barrier between inside and outside of the cell's environment as a topology. Conceptually, both the unicell and ‘two hands clapping’ are holisms, but because the cell is constituted by the ambiguity of negative entropy, and ‘one hand clapping’ requires two hands, they are both pseudo-holisms, constantly striving to be whole again. In the case of the cell, it is incomplete in the sense that there are factors in the ever-changing environment that can homeostatically complete it. That process results in biochemical modification of specific DNA codes in the egg or sperm so that the offspring is able to adapt in subsequent generations epigenetically. The opportunity to trace the evolution of the breath from humans to fish opens up to the further revelation of the interplay between evolution and geological change, tracing it back to invertebrates, sponges, and ultimately to unicellular organisms. And therein is evidence that the Cosmos itself ‘breathes’, providing the ultimate celestial fundament for this trail of holisms.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 19-23"},"PeriodicalIF":3.8,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The quantum cell 量子电池
IF 3.8 3区 生物学
Progress in Biophysics & Molecular Biology Pub Date : 2024-02-22 DOI: 10.1016/j.pbiomolbio.2024.02.003
John S. Torday
{"title":"The quantum cell","authors":"John S. Torday","doi":"10.1016/j.pbiomolbio.2024.02.003","DOIUrl":"10.1016/j.pbiomolbio.2024.02.003","url":null,"abstract":"<div><p>There is a consensus that we are conscious of something greater than ourselves, as if we are derived from some other primordial set of principles. Classical or Newtonian physics is based on the Laws of Nature. Conversely, in a recent series of articles, it has been hypothesized that the cell was formed from lipid molecules submerged in the primordial ocean that covered the earth 100 million years after it formed. Since lipids are amphiphiles, with both a positively- and negatively-charged pole, the negatively-charged pole is miscible in water. Under the influence of earth's gravity, the lipid molecules stand up perpendicularly to the surface of the water, packing together until the negative charge neutralizes the Van der Waals force for surface tension, causing the lipid molecules to ‘leap’ into the micellar form as a sphere with a semi-permeable membrane. Particles in the water freely enter and exit such spheres based on mass action. Over time such protocells evolved Symbiogenesis, encountering factors that posed existential threats, assimilating them to form physiology to maintain homeostatic control. Importantly, when differentiated lung or bone cells are exposed to zero gravity, they lose their phenotypic identity in their evolved state, which has been interpreted as transiting from local to non-local consciousness.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"188 ","pages":"Pages 24-30"},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139941252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信