{"title":"Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution","authors":"Peter A. Corning","doi":"10.1016/j.pbiomolbio.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"189 ","pages":"Pages 26-31"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007961072400035X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.
期刊介绍:
Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.