Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peter A. Corning
{"title":"Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution","authors":"Peter A. Corning","doi":"10.1016/j.pbiomolbio.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.</p></div>","PeriodicalId":54554,"journal":{"name":"Progress in Biophysics & Molecular Biology","volume":"189 ","pages":"Pages 26-31"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biophysics & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007961072400035X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.

智能系统中的合作基因:进化中的包容性新合成
半个多世纪以来,生物学家朱利安-赫胥黎(Julian Huxley)提出的 "现代综合"(Modern Synthesis)一词,一直被用作生物进化模式的标签,在这个模式中,基因影响被视为创造力和变化的主要来源。多年来,随着越来越多的证据表明在进化过程中还有许多其他更为重要的因素在起作用,人们提出了一些理论上的 "折衷方案",如所谓的 "扩展综合"。这已经站不住脚了。现在是放弃现代综合法及其对偶 "自私基因 "的时候了。这里需要一种新的、多方面的、开放式的、"包容性 "的进化综合法,在这种综合法中,生命系统本身被认为是有目的的(目的论)"代理人",而各种合作效应(协同作用)被认为是最重要的影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Biophysics & Molecular Biology
Progress in Biophysics & Molecular Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
7.90%
发文量
85
审稿时长
85 days
期刊介绍: Progress in Biophysics & Molecular Biology is an international review journal and covers the ground between the physical and biological sciences since its launch in 1950. It indicates to the physicist the great variety of unsolved problems awaiting attention in biology and medicine. The biologist and biochemist will find that this journal presents new and stimulating ideas and novel approaches to studying and influencing structural and functional properties of the living organism. This journal will be of particular interest to biophysicists, biologists, biochemists, cell physiologists, systems biologists, and molecular biologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信