{"title":"智能系统中的合作基因:进化中的包容性新合成","authors":"Peter A. Corning","doi":"10.1016/j.pbiomolbio.2024.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution\",\"authors\":\"Peter A. Corning\",\"doi\":\"10.1016/j.pbiomolbio.2024.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S007961072400035X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007961072400035X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Cooperative genes in smart systems: Toward an inclusive new synthesis in evolution
For more than half a century, biologist Julian Huxley's term, the “Modern Synthesis”, has been used as a label for a model of biological evolution where genetic influences are viewed as a principal source of creativity and change. Over the years, as evidence has accumulated that there are many other, far more important factors at work in evolution, theoretical “compromises,” such as the so-called “Extended Synthesis”, have been proposed. This is no longer tenable. It is time to abandon the Modern Synthesis, and its doppelganger “The Selfish Gene”. Here is the case for a new, multi-faceted, open-ended, “inclusive” evolutionary synthesis, where living systems themselves are recognized as purposeful (teleonomic) “agents” and cooperative effects (synergies) of various kinds are seen as all-important influences.