DNA 损伤修复建模及其他

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hooshang Nikjoo, Shirin Rahmanian, Reza Taleei
{"title":"DNA 损伤修复建模及其他","authors":"Hooshang Nikjoo, Shirin Rahmanian, Reza Taleei","doi":"10.1016/j.pbiomolbio.2024.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesise DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling DNA Damage-Repair and Beyond.\",\"authors\":\"Hooshang Nikjoo, Shirin Rahmanian, Reza Taleei\",\"doi\":\"10.1016/j.pbiomolbio.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesise DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pbiomolbio.2024.05.002\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pbiomolbio.2024.05.002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了 DNA 损伤和 DNA 修复的机理模型研究,以及在哺乳动物细胞核中产生的后果。我们假设 DNA 缺失是双链断裂修复的结果,导致基因组的改变,而基因组的改变在遗传和疾病的长期发展中起着至关重要的作用。本文旨在回顾人类基因组中自然发生的 DNA 缺失的形成机制,以及这些机制对于弥合 DNA 双股断裂诱导与内源性和外源性事件造成的人类基因组缺失之间的差距的潜在意义。所展示的细胞核模型能够在分子水平上模拟 DNA 损伤,确定在所有染色体区域和环路中诱发的损伤谱。我们对 DNA 双支架断裂(DSB)、单链断裂(SSB)和碱基损伤(BD)的修复机理建模表明,DNA 损伤的复杂性是导致修复时间延长的原因,也是哺乳动物细胞修复曲线呈双相特征的原因。在缺乏实验数据的情况下,该修复机理模型预测了参与 DSB、SSB 和 BD 修复的蛋白质的体内速率常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling DNA Damage-Repair and Beyond.

The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesise DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信