PsychometrikaPub Date : 2025-08-26DOI: 10.1017/psy.2025.10029
Hyeon-Ah Kang
{"title":"A Latent Markov Model for Noninvariant Measurements: An Application to Interaction Log Data From Computer-Interactive Assessments.","authors":"Hyeon-Ah Kang","doi":"10.1017/psy.2025.10029","DOIUrl":"https://doi.org/10.1017/psy.2025.10029","url":null,"abstract":"<p><p>The latent Markov model (LMM) has been increasingly used to analyze log data from computer-interactive assessments. An important consideration in applying the LMM to assessment data is measurement effects of items. In educational and psychological assessment, items exhibit distinct psychometric qualities and induce systematic variance to assessment outcome data. The current development in LMM, however, assumes that items have uniform effects and do not contribute to the variance of measurement outcomes. In this study, we propose a refinement of LMM that relaxes the measurement invariance constraint and examine empirical performance of the new framework through numerical experimentation. We modify the LMM for noninvariant measurements and refine the inferential scheme to accommodate the event-specific measurement effects. Numerical experiments are conducted to validate the proposed inference methods and evaluate the performance of the new framework. Results suggest that the proposed inferential scheme performs adequately well in retrieving the model parameters and state profiles. The new LMM framework demonstrated reliable and stable performance in modeling latent processes while appropriately accounting for items' measurement effects. Compared with the traditional scheme, the refined framework demonstrated greater relevance to real assessment data and yielded more robust inference results when the model was ill-specified. The findings from the empirical evaluations suggest that the new framework has potential for serving large-scale assessment data that exhibit distinct measurement effects.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-25"},"PeriodicalIF":3.1,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144978378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-11DOI: 10.1017/psy.2025.10038
Sunbeom Kwon, Susu Zhang
{"title":"Explaining Performance Gaps with Problem-Solving Process Data via Latent Class Mediation Analysis.","authors":"Sunbeom Kwon, Susu Zhang","doi":"10.1017/psy.2025.10038","DOIUrl":"10.1017/psy.2025.10038","url":null,"abstract":"<p><p>Process data, in particular, log data collected from a computerized test, documents the sequence of actions performed by an examinee in pursuit of solving a problem, affording an opportunity to understand test-taking behavioral patterns that account for demographic group differences in key outcomes of interest, for instance, final score on a cognitive item. Addressing this aim, this article proposes a latent class mediation analysis procedure. Using continuous process features extracted from action sequence data as indicators, latent classes underlying the test-taking behavior are identified in a latent class mediation model, where an examinee's nominal latent class membership enters as the mediator between the observed grouping and outcome variables. A headlong search algorithm for selecting the subset of process features that maximizes the total indirect effect of the latent class mediator is implemented. The proposed procedure is validated with a series of simulations. An application to a large-scale assessment highlights how the proposed method can be used to explain performance gaps between students with learning disability and their typically developing peers on the National Assessment of Educational Progress (NAEP) math assessment.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-29"},"PeriodicalIF":3.1,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144818319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-11DOI: 10.1017/psy.2025.10034
Weicong Lyu, Chun Wang, Gongjun Xu
{"title":"Detecting Differential Item Functioning across Multiple Groups using Group Pairwise Penalty.","authors":"Weicong Lyu, Chun Wang, Gongjun Xu","doi":"10.1017/psy.2025.10034","DOIUrl":"https://doi.org/10.1017/psy.2025.10034","url":null,"abstract":"","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-41"},"PeriodicalIF":3.1,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144818318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-11DOI: 10.1017/psy.2025.10035
Giuseppe Mignemi, Ioanna Manolopoulou
{"title":"Bayesian Nonparametric Models for Multiple Raters: A General Statistical Framework.","authors":"Giuseppe Mignemi, Ioanna Manolopoulou","doi":"10.1017/psy.2025.10035","DOIUrl":"https://doi.org/10.1017/psy.2025.10035","url":null,"abstract":"<p><p>Rating procedure is crucial in many applied fields (e.g., educational, clinical, emergency). In these contexts, a rater (e.g., teacher, doctor) scores a subject (e.g., student, doctor) on a rating scale. Given raters' variability, several statistical methods have been proposed for assessing and improving the quality of ratings. The analysis and the estimate of the Intraclass Correlation Coefficient (ICC) are major concerns in such cases. As evidenced by the literature, ICC might differ across different subgroups of raters and might be affected by contextual factors and subject heterogeneity. Model estimation in the presence of heterogeneity has been one of the recent challenges in this research line. Consequently, several methods have been proposed to address this issue under a parametric multilevel modelling framework, in which strong distributional assumptions are made. We propose a more flexible model under the Bayesian nonparametric (BNP) framework, in which most of those assumptions are relaxed. By eliciting hierarchical discrete nonparametric priors, the model accommodates clusters among raters and subjects, naturally accounts for heterogeneity, and improves estimates' accuracy. We propose a general BNP heteroscedastic framework to analyze continuous and coarse rating data and possible latent differences among subjects and raters. The estimated densities are used to make inferences about the rating process and the quality of the ratings. By exploiting a stick-breaking representation of the discrete nonparametric priors, a general class of ICC indices might be derived for these models. Our method allows us to independently identify latent similarities between subjects and raters and can be applied in <i>precise education</i> to improve personalized teaching programs or interventions. Theoretical results about the ICC are provided together with computational strategies. Simulations and a real-world application are presented, and possible future directions are discussed.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-36"},"PeriodicalIF":3.1,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144818305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-08DOI: 10.1017/psy.2025.10031
Joseph Resch, Samuel Baugh, Hao Duan, James Tang, Matthew J Madison, Michael Cotterell, Minjeong Jeon
{"title":"Bayesian Transition Diagnostic Classification Models with Polya-Gamma Augmentation.","authors":"Joseph Resch, Samuel Baugh, Hao Duan, James Tang, Matthew J Madison, Michael Cotterell, Minjeong Jeon","doi":"10.1017/psy.2025.10031","DOIUrl":"10.1017/psy.2025.10031","url":null,"abstract":"<p><p>Diagnostic classification models assume the existence of latent attribute profiles, the possession of which increases the probability of responding correctly to questions requiring the corresponding attributes. Through the use of longitudinally administered exams, the degree to which students are acquiring core attributes over time can be assessed. While past approaches to longitudinal diagnostic classification modeling perform inference on the overall probability of acquiring particular attributes, there is particular interest in the relationship between student progression and student covariates such as intervention effects. To address this need, we propose an integrated Bayesian model for student progression in a longitudinal diagnostic classification modeling framework. Using Pòlya-gamma augmentation with two logistic link functions, we achieve computationally efficient posterior estimation with a conditionally Gibbs sampling procedure. We show that this approach achieves accurate parameter recovery when evaluated using simulated data. We also demonstrate the method on a real-world educational testing data set.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-32"},"PeriodicalIF":3.1,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144800958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-08DOI: 10.1017/psy.2025.10033
Youjin Lee, Youmi Suk
{"title":"Evidence Factors in Fuzzy Regression Discontinuity Designs with Sequential Treatment Assignments.","authors":"Youjin Lee, Youmi Suk","doi":"10.1017/psy.2025.10033","DOIUrl":"10.1017/psy.2025.10033","url":null,"abstract":"<p><p>Many observational studies often involve multiple levels of treatment assignment. In particular, fuzzy regression discontinuity (RD) designs have sequential treatment assignment processes: first based on eligibility criteria, and second, on (non-)compliance rules. In such fuzzy RD designs, researchers typically use either an intent-to-treat approach or an instrumental variable-type approach, and each is subject to both overlapping and unique biases. This article proposes a new evidence factors (EFs) framework for fuzzy RD designs with sequential treatment assignments, which may be influenced by different levels of decision-makers. Each of the proposed EFs aims to test the same causal null hypothesis while potentially being subject to different types of biases. Our proposed framework utilizes the local RD randomization and randomization-based inference. We evaluate the effectiveness of our proposed framework through simulation studies and two real datasets on pre-kindergarten programs and testing accommodations.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-19"},"PeriodicalIF":3.1,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144800959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-08DOI: 10.1017/psy.2025.10027
Rongqian Sun, Xiangnan Feng, Chuchu Wang, Xinyuan Song
{"title":"Bayesian Structural Equation Envelope Model.","authors":"Rongqian Sun, Xiangnan Feng, Chuchu Wang, Xinyuan Song","doi":"10.1017/psy.2025.10027","DOIUrl":"10.1017/psy.2025.10027","url":null,"abstract":"<p><p>The envelope model has gained significant attention since its proposal, offering a fresh perspective on dimension reduction in multivariate regression models and improving estimation efficiency. One of its appealing features is its adaptability to diverse regression contexts. This article introduces the integration of envelope methods into the factor analysis model. In contrast to previous research primarily focused on the frequentist approach, the study proposes a Bayesian approach for estimation and envelope dimension selection. A Metropolis-within-Gibbs sampling algorithm is developed to draw posterior samples for Bayesian inference. A simulation study is conducted to illustrate the effectiveness of the proposed method. Additionally, the proposed methodology is applied to the ADNI dataset to explore the relationship between cognitive decline and the changes occurring in various brain regions. This empirical application further highlights the practical utility of the proposed model in real-world scenarios.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-22"},"PeriodicalIF":3.1,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144800957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-08DOI: 10.1017/psy.2025.10036
Peida Zhan, Zhimou Wang, Gaohong Chu, Haixin Qiao
{"title":"Teamwork Cognitive Diagnostic Modeling.","authors":"Peida Zhan, Zhimou Wang, Gaohong Chu, Haixin Qiao","doi":"10.1017/psy.2025.10036","DOIUrl":"10.1017/psy.2025.10036","url":null,"abstract":"<p><p>Teamwork relies on collaboration to achieve goals that exceed individual capabilities, with team cognition playing a key role by integrating individual expertise and shared understanding. Identifying the causes of inefficiencies or poor team performance is critical for implementing targeted interventions and fostering the development of team cognition. This study proposes a teamwork cognitive diagnostic modeling framework comprising 12 specific models-collectively referred to as Team-CDMs-which are designed to capture the interdependence among team members through emergent team cognitions by jointly modeling individual cognitive attributes and a team-level construct, termed <i>teamwork quality</i>, which reflects the social dimension of collaboration. The models can be used to identify strengths and weaknesses in team cognition and determine whether poor performance arises from cognitive deficiencies or social issues. Two simulation studies were conducted to assess the psychometric properties of the models under diverse conditions, followed by a teamwork reasoning task to demonstrate their application. The results showed that Team-CDMs achieve robust parameter estimation, effectively diagnose individual attributes, and assess teamwork quality while pinpointing the causes of poor performance. These findings underscore the utility of Team-CDMs in understanding, diagnosing, and improving team cognition, offering a foundation for future research and practical applications in teamwork-based assessments.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-27"},"PeriodicalIF":3.1,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144800960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-08-07DOI: 10.1017/psy.2025.10037
Youjin Sung, Youngjin Han, Yang Liu
{"title":"A New Fit Assessment Framework for Common Factor Models Using Generalized Residuals.","authors":"Youjin Sung, Youngjin Han, Yang Liu","doi":"10.1017/psy.2025.10037","DOIUrl":"10.1017/psy.2025.10037","url":null,"abstract":"<p><p>Assessing fit in common factor models solely through the lens of mean and covariance structures, as is commonly done with conventional goodness-of-fit (GOF) assessments, may overlook critical aspects of misfit, potentially leading to misleading conclusions. To achieve more flexible fit assessment, we extend the theory of generalized residuals (Haberman & Sinharay, 2013), originally developed for models with categorical data, to encompass more general measurement models. Within this extended framework, we propose several fit test statistics designed to evaluate various parametric assumptions involved in common factor models. The examples include assessing the distributional assumptions of latent variables and the functional form assumptions of individual manifest variables. The performance of the proposed statistics is examined through simulation studies and an empirical data analysis. Our findings suggest that generalized residuals are promising tools for detecting misfit in measurement models, often masked when assessed by conventional GOF testing methods.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-26"},"PeriodicalIF":3.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144796128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PsychometrikaPub Date : 2025-07-31DOI: 10.1017/psy.2025.10032
Sun-Joo Cho, Goodwin Amanda, Jorge Salas, Sophia Mueller
{"title":"Explaining Person-by-Item Responses using Person- and Item-Level Predictors via Random Forests and Interpretable Machine Learning in Explanatory Item Response Models.","authors":"Sun-Joo Cho, Goodwin Amanda, Jorge Salas, Sophia Mueller","doi":"10.1017/psy.2025.10032","DOIUrl":"https://doi.org/10.1017/psy.2025.10032","url":null,"abstract":"<p><p>This study incorporates a random forest (RF) approach to probe complex interactions and nonlinearity among predictors into an item response model with the goal of using a hybrid approach to outperform either an RF or explanatory item response model (EIRM) only in explaining item responses. In the specified model, called EIRM-RF, predicted values using RF are added as a predictor in EIRM to model the nonlinear and interaction effects of person- and item-level predictors in person-by-item response data, while accounting for random effects over persons and items. The results of the EIRM-RF are probed with interpretable machine learning (ML) methods, including feature importance measures, partial dependence plots, accumulated local effect plots, and the <i>H</i>-statistic. The EIRM-RF and the interpretable methods are illustrated using an empirical data set to explain differences in reading comprehension in digital versus paper mediums, and the results of EIRM-RF are compared with those of EIRM and RF to show empirical differences in modeling the effects of predictors and random effects among EIRM, RF, and EIRM-RF. In addition, simulation studies are conducted to compare model accuracy among the three models and to evaluate the performance of interpretable ML methods.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-38"},"PeriodicalIF":3.1,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144755132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}