{"title":"序列处理分配模糊回归不连续设计的证据因素。","authors":"Youjin Lee, Youmi Suk","doi":"10.1017/psy.2025.10033","DOIUrl":null,"url":null,"abstract":"<p><p>Many observational studies often involve multiple levels of treatment assignment. In particular, fuzzy regression discontinuity (RD) designs have sequential treatment assignment processes: first based on eligibility criteria, and second, on (non-)compliance rules. In such fuzzy RD designs, researchers typically use either an intent-to-treat approach or an instrumental variable-type approach, and each is subject to both overlapping and unique biases. This article proposes a new evidence factors (EFs) framework for fuzzy RD designs with sequential treatment assignments, which may be influenced by different levels of decision-makers. Each of the proposed EFs aims to test the same causal null hypothesis while potentially being subject to different types of biases. Our proposed framework utilizes the local RD randomization and randomization-based inference. We evaluate the effectiveness of our proposed framework through simulation studies and two real datasets on pre-kindergarten programs and testing accommodations.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-19"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence Factors in Fuzzy Regression Discontinuity Designs with Sequential Treatment Assignments.\",\"authors\":\"Youjin Lee, Youmi Suk\",\"doi\":\"10.1017/psy.2025.10033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many observational studies often involve multiple levels of treatment assignment. In particular, fuzzy regression discontinuity (RD) designs have sequential treatment assignment processes: first based on eligibility criteria, and second, on (non-)compliance rules. In such fuzzy RD designs, researchers typically use either an intent-to-treat approach or an instrumental variable-type approach, and each is subject to both overlapping and unique biases. This article proposes a new evidence factors (EFs) framework for fuzzy RD designs with sequential treatment assignments, which may be influenced by different levels of decision-makers. Each of the proposed EFs aims to test the same causal null hypothesis while potentially being subject to different types of biases. Our proposed framework utilizes the local RD randomization and randomization-based inference. We evaluate the effectiveness of our proposed framework through simulation studies and two real datasets on pre-kindergarten programs and testing accommodations.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/psy.2025.10033\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10033","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Evidence Factors in Fuzzy Regression Discontinuity Designs with Sequential Treatment Assignments.
Many observational studies often involve multiple levels of treatment assignment. In particular, fuzzy regression discontinuity (RD) designs have sequential treatment assignment processes: first based on eligibility criteria, and second, on (non-)compliance rules. In such fuzzy RD designs, researchers typically use either an intent-to-treat approach or an instrumental variable-type approach, and each is subject to both overlapping and unique biases. This article proposes a new evidence factors (EFs) framework for fuzzy RD designs with sequential treatment assignments, which may be influenced by different levels of decision-makers. Each of the proposed EFs aims to test the same causal null hypothesis while potentially being subject to different types of biases. Our proposed framework utilizes the local RD randomization and randomization-based inference. We evaluate the effectiveness of our proposed framework through simulation studies and two real datasets on pre-kindergarten programs and testing accommodations.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.