{"title":"A New Fit Assessment Framework for Common Factor Models Using Generalized Residuals.","authors":"Youjin Sung, Youngjin Han, Yang Liu","doi":"10.1017/psy.2025.10037","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing fit in common factor models solely through the lens of mean and covariance structures, as is commonly done with conventional goodness-of-fit (GOF) assessments, may overlook critical aspects of misfit, potentially leading to misleading conclusions. To achieve more flexible fit assessment, we extend the theory of generalized residuals (Haberman & Sinharay, 2013), originally developed for models with categorical data, to encompass more general measurement models. Within this extended framework, we propose several fit test statistics designed to evaluate various parametric assumptions involved in common factor models. The examples include assessing the distributional assumptions of latent variables and the functional form assumptions of individual manifest variables. The performance of the proposed statistics is examined through simulation studies and an empirical data analysis. Our findings suggest that generalized residuals are promising tools for detecting misfit in measurement models, often masked when assessed by conventional GOF testing methods.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-26"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10037","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing fit in common factor models solely through the lens of mean and covariance structures, as is commonly done with conventional goodness-of-fit (GOF) assessments, may overlook critical aspects of misfit, potentially leading to misleading conclusions. To achieve more flexible fit assessment, we extend the theory of generalized residuals (Haberman & Sinharay, 2013), originally developed for models with categorical data, to encompass more general measurement models. Within this extended framework, we propose several fit test statistics designed to evaluate various parametric assumptions involved in common factor models. The examples include assessing the distributional assumptions of latent variables and the functional form assumptions of individual manifest variables. The performance of the proposed statistics is examined through simulation studies and an empirical data analysis. Our findings suggest that generalized residuals are promising tools for detecting misfit in measurement models, often masked when assessed by conventional GOF testing methods.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.