Bayesian Transition Diagnostic Classification Models with Polya-Gamma Augmentation.

IF 3.1 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Joseph Resch, Samuel Baugh, Hao Duan, James Tang, Matthew J Madison, Michael Cotterell, Minjeong Jeon
{"title":"Bayesian Transition Diagnostic Classification Models with Polya-Gamma Augmentation.","authors":"Joseph Resch, Samuel Baugh, Hao Duan, James Tang, Matthew J Madison, Michael Cotterell, Minjeong Jeon","doi":"10.1017/psy.2025.10031","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnostic classification models assume the existence of latent attribute profiles, the possession of which increases the probability of responding correctly to questions requiring the corresponding attributes. Through the use of longitudinally administered exams, the degree to which students are acquiring core attributes over time can be assessed. While past approaches to longitudinal diagnostic classification modeling perform inference on the overall probability of acquiring particular attributes, there is particular interest in the relationship between student progression and student covariates such as intervention effects. To address this need, we propose an integrated Bayesian model for student progression in a longitudinal diagnostic classification modeling framework. Using Pòlya-gamma augmentation with two logistic link functions, we achieve computationally efficient posterior estimation with a conditionally Gibbs sampling procedure. We show that this approach achieves accurate parameter recovery when evaluated using simulated data. We also demonstrate the method on a real-world educational testing data set.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-32"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10031","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnostic classification models assume the existence of latent attribute profiles, the possession of which increases the probability of responding correctly to questions requiring the corresponding attributes. Through the use of longitudinally administered exams, the degree to which students are acquiring core attributes over time can be assessed. While past approaches to longitudinal diagnostic classification modeling perform inference on the overall probability of acquiring particular attributes, there is particular interest in the relationship between student progression and student covariates such as intervention effects. To address this need, we propose an integrated Bayesian model for student progression in a longitudinal diagnostic classification modeling framework. Using Pòlya-gamma augmentation with two logistic link functions, we achieve computationally efficient posterior estimation with a conditionally Gibbs sampling procedure. We show that this approach achieves accurate parameter recovery when evaluated using simulated data. We also demonstrate the method on a real-world educational testing data set.

具有poly -gamma增强的贝叶斯过渡诊断分类模型。
诊断分类模型假定存在潜在的属性概况,拥有潜在的属性概况可以增加正确回答需要相应属性的问题的概率。通过使用纵向管理的考试,可以评估学生在一段时间内获得核心属性的程度。虽然过去的纵向诊断分类建模方法对获得特定属性的总体概率进行了推断,但对学生进步和学生协变量(如干预效果)之间的关系特别感兴趣。为了满足这一需求,我们提出了一个纵向诊断分类建模框架中学生进步的综合贝叶斯模型。利用Pòlya-gamma与两个逻辑链接函数的增强,我们用条件Gibbs抽样过程实现了计算效率高的后验估计。我们表明,当使用模拟数据评估时,该方法实现了准确的参数恢复。我们还在一个真实的教育测试数据集上演示了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信