{"title":"Structural, Optical, Electrical, and Nanomechanical Properties of F-Doped Sno2 Fabricated by Ultrasonic Spray Pyrolysis","authors":"Jaewon Kim, Gahui Kim, Young-Bae Park","doi":"10.1007/s13391-024-00489-w","DOIUrl":"10.1007/s13391-024-00489-w","url":null,"abstract":"<div><p>Transparent conductive oxides (TCOs) are in high demand by optoelectronic devices such as light-emitting diodes, phototransistors, touchscreens, solar cells, and low-emissivity windows. Tin-doped indium oxide (ITO) material is the most predominant in the market and is utilised among the various TCO materials. However, the lack of raw materials and the high cost of indium materials have necessitated the exploration of cost-effective TCOs that can serve as viable alternatives without compromising the desired optical and electrical properties. Tin oxide (SnO<sub>2</sub>) films emerge as a promising candidate, offering several benefits, including abundant material sources, inexpensiveness, and non-toxicity. It anticipates producing a higher visible transmittance, excellent electrical conductivity, and good mechanical properties compared to ITO. Moreover, SnO<sub>2</sub> can increase its electrical conductivity by introducing representative dopant elements such as Sb, and F. However, structural, optical, and mechanical properties can affect additional dopant elements. Herein, we have demonstrated fluorine-doped tin oxide (FTO) thin films as a function of F dopant concentration by ultrasonic spray pyrolysis. The FTO thin films achieved excellent properties for FTO coatings such as polycrystalline structure, electrical conductivity (<i>ρ</i> = 9.1 × 10<sup>–5</sup> Ω cm), transmittance in the visible region (average visible transmittance up to 85.0%, with peak values of 96.5%) with a wider band gap between 3.80 and 4.28 eV. The increasing elastic modulus and hardness are related to significant grain boundaries, reaching the highest values of 154.5 ± 18.6 and 12.3 ± 3.6 GPa, respectively. The measured interface adhesion between SnO<sub>2</sub>/Si substrate is 9.32 J/m<sup>2</sup>.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"402 - 413"},"PeriodicalIF":2.1,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Gawlińska-Nęcek, Zbigniew Starowicz, Marta Janusz-Skuza, Anna Jarzębska, Piotr Panek
{"title":"The Copper Oxide with Alkali Potassium Dopant for Heterojunction Solar Cells Application","authors":"Katarzyna Gawlińska-Nęcek, Zbigniew Starowicz, Marta Janusz-Skuza, Anna Jarzębska, Piotr Panek","doi":"10.1007/s13391-024-00490-3","DOIUrl":"10.1007/s13391-024-00490-3","url":null,"abstract":"<div><p>This work aimed to produce a low resistive copper oxide nanolayer with potassium admixture by a simple spray coating technique. The different concentration of dopant (2–20 wt%) was tested. It was found that 14 wt% of potassium reduced the resistivity of copper oxide from 21 Ω cm for reference layer to 5 Ω cm for doped thin film. The phase composition as well as the optical, and electrical properties of manufactured oxides were studied. It was found that potassium admixture affects the phase composition of manufactured thin film which turns from CuO to Cu<sub>2</sub>O. This is accompanied by a widening of the optical band gap energy of the oxide. The roughness of the layer also increased. The photovoltaic properties of produced copper oxides were tested in n–i–p heterojunction with n-type Cz-Si and as a final product the solar cells with open circuit voltage of 296 mV and short circuit current density of 0.78 mA/cm<sup>2</sup> was fabricated.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"548 - 556"},"PeriodicalIF":2.1,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Post-Deposition Annealing on Electrical Properties of RF-Sputtered Cu2O/4H-SiC and NiO/4H-SiC PiN Diodes","authors":"Hyung-Jin Lee, Soo-Young Moon, Kung-Yen Lee, Sang-Mo Koo","doi":"10.1007/s13391-024-00484-1","DOIUrl":"10.1007/s13391-024-00484-1","url":null,"abstract":"<div><p>This study investigated the impact of the post-deposition annealing (PDA) process on the material and electrical properties of copper oxide (Cu<sub>2</sub>O) and nickel oxide (NiO) thin films deposited on a silicon carbide (SiC) substrate. Through radiofrequency (RF) sputtering, these films were subjected to PDA in a nitrogen (N<sub>2</sub>) and oxygen (O<sub>2</sub>) gas environment. Remarkably, the Cu<sub>2</sub>O films resisted phase transition following the N<sub>2</sub> PDA process but exhibited a transition to cupric oxide (CuO) after undergoing the O<sub>2</sub> PDA process. The symmetry of Cu 2p in the as-deposited Cu<sub>2</sub>O film was excellent; however, the phase-transformed CuO films exhibited an increase in binding energy and the emergence of satellite peaks. The Ni 2p exhibited various defects, such as nickel vacancies (V<sub>Ni</sub>) and interstitial oxygen (O<sub>i</sub>), in response to the different PDA atmospheres. The rectification ratios of the N<sub>2</sub>-annealed Cu<sub>2</sub>O and NiO devices were determined as 1.50 × 10<sup>7</sup> and 4.01 × 10<sup>6</sup>, respectively, signifying a substantial enhancement by a factor of approximately 789 for the Cu<sub>2</sub>O/SiC device and 124 for the NiO/SiC device relative to their non-annealed counterparts. The findings of this study indicate that meticulous control of deposition for potential <i>p</i>-type materials such as Cu<sub>2</sub>O and NiO can significantly improve the performance in applications involving high-throughput and low-cost electronics.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"537 - 547"},"PeriodicalIF":2.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gahui Kim, Kirak Son, Young-Cheon Kim, Young-Bae Park
{"title":"Effects of Dielectric Curing Temperature on the Interfacial Reliability of Cu/Ti/PBO for FOWLP Applications","authors":"Gahui Kim, Kirak Son, Young-Cheon Kim, Young-Bae Park","doi":"10.1007/s13391-024-00485-0","DOIUrl":"10.1007/s13391-024-00485-0","url":null,"abstract":"<p>In this study, the effect of curing temperatures of low-temperature curable polybenzoxazole (PBO) dielectrics on the interfacial adhesion energies between the Cu redistribution layer and PBO dielectric used in advanced fan-out packaging was systematically investigated using a four-point bending test. The results revealed that the interfacial adhesion energy increased when the PBO curing temperature increased from 175 to 200 °C, whereas it decreased when the curing temperature increased from 200 to 225 °C. The increase in the interfacial adhesion energy with an increase in the PBO curing temperature from 175 to 200 °C is attributed to the polymerization of PBO. However, the decrease in the interfacial adhesion energy as the curing temperature increases to 225 °C results from thermal stress.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"393 - 401"},"PeriodicalIF":2.1,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ternary Organic Solar Cells—Simulation–Optimization Approach","authors":"Gabriela Lewińska","doi":"10.1007/s13391-023-00479-4","DOIUrl":"10.1007/s13391-023-00479-4","url":null,"abstract":"<div><p>Organic solar cells are a rapidly expanding subfield of photovoltaics. The publication presents simulation results for organic cells with a focus on optimizing cells and maximizing performance using OghmaNano software. The efficiencies obtained from the simulation of the ternary solar devices were received. The efficiency achieved from simulations for the mobility of charge carriers as well as the dependence of the performance on the effective density from free electron and hole states were simulated. The most favorable ratios of hole and electron mobility and charge carrier densities were determined in terms of device efficiency. The impact of loss processes on the cell efficiency was also investigated.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"440 - 449"},"PeriodicalIF":2.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eucommia Ulmoides Barks-derived Anodes for Sodium ion Battery and Method to Improve Electrochemical Performances by Modifying Defects","authors":"Shuai Sun, Lei Wang","doi":"10.1007/s13391-024-00486-z","DOIUrl":"10.1007/s13391-024-00486-z","url":null,"abstract":"<div><p>\u0000 Hard carbon were prepared from Eucommia ulmoides barks by carbonization (1100 or 1300 °C) and then used as anode materials for sodium ion battery (SIB). Results showed that, although increased carbonization temperature had positive influence on the initial coulombic efficiency (ICE) of samples, the sample carbonized at higher temperature could not show higher specific capacities from 100 mA g<sup>− 1</sup> to 1 A g<sup>− 1</sup> (current density). This phenomenon could be attributed to few changes of specific surface area for samples carbonized at different temperature. Further studies showed that if the obtained hard carbon underwent high temperature treatment together with pitch powders (the hard carbon did not need to contact with pitch powders directly during the treating process), the specific surface area of samples decreased, while number of disordered bonds and interlayer distance of crystallites increased. The modification of structural defects made the samples show better electrochemical performances (ICE, specific capacity and cycling characteristic). Additionally, when the method (modifying defects) was used in Cupressus funebris (cypress wood) based anodes for SIB, the ICE and specific capacities at different current densities of samples could also be improved, which means the method may have good applicability for producing biomass-derived SIB anodes on a large scale.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"474 - 483"},"PeriodicalIF":2.1,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mari Napari, Spyros Stathopoulos, Themis Prodromakis, Firman Simanjuntak
{"title":"Forming-Free and Non-linear Resistive Switching in Bilayer (hbox {HfO}_{textrm{x}})/(hbox {TaO}_{textrm{x}}) Memory Devices by Interface-Induced Internal Resistance","authors":"Mari Napari, Spyros Stathopoulos, Themis Prodromakis, Firman Simanjuntak","doi":"10.1007/s13391-023-00481-w","DOIUrl":"10.1007/s13391-023-00481-w","url":null,"abstract":"<p>Resistive switching memory devices with tantalum oxide (<span>(hbox {TaO}_{textrm{x}})</span>) and hafnium oxide (<span>(hbox {HfO}_{textrm{x}})</span>) mono- and bilayers were fabricated using atomic layer deposition. The bilayer devices with Ti and TiN electrodes show non-linear switching characteristics, and can operate without requiring an initial electroforming step. The insertion of the <span>(hbox {HfO}_{textrm{x}})</span> layer induces the switching behaviour on single layer <span>(hbox {TaO}_{textrm{x}})</span> that shows Zener diode-like characteristics, with conductivity depending on the top electrode metal. The electronic conductivity mechanism study shows Schottky emission at low voltage regime followed by tunneling at higher applied bias, both indicating interface-dominated conduction. The switching mechanism study is supported by X-ray photoelectron spectroscopy characterization of the films that show a formation of <span>(hbox {TaO}_{textrm{x}}hbox {N}_{textrm{y}})</span> and <span>(hbox {TaN}_{textrm{x}})</span> species at the oxide-electrode interface. This interfacial layer serves as a high resistivity barrier layer enabling the homogeneous resistive switching behavior.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"363 - 371"},"PeriodicalIF":2.1,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00481-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Thickness Uniformity of MoS2 Thin Films on SiO2/Si Substrates via Substrate Pre-Treatment with Oxygen Plasma","authors":"Irang Lim, Youjin Koo, Woong Choi","doi":"10.1007/s13391-024-00487-y","DOIUrl":"10.1007/s13391-024-00487-y","url":null,"abstract":"<p>We report the enhanced thickness uniformity of chemical-vapor-deposited MoS<sub>2</sub> thin films on SiO<sub>2</sub> substrates through substrate pre-treatment with O<sub>2</sub> plasma. Contact angle measurements indicated that the SiO<sub>2</sub> surface became more hydrophilic with an increase in surface energy after O<sub>2</sub> plasma pre-treatment. Analysis through Raman spectra and transmission electron microscopy measurements revealed that the thickness uniformity of MoS<sub>2</sub> thin films improved over a centimeter scale after the O<sub>2</sub> plasma pre-treatment on SiO<sub>2</sub> substrates. Atomic force microscopy analysis further revealed that O<sub>2</sub> plasma pre-treatment on SiO<sub>2</sub> substrates improved the uniformity of surface roughness in the MoS<sub>2</sub> thin films. These results demonstrate that O<sub>2</sub> plasma pre-treatment on SiO<sub>2</sub> substrates is an effective method of enhancing the thickness uniformity of MoS<sub>2</sub> thin films, providing valuable insights for the advancement of large-scale synthesis of MoS<sub>2</sub> and related transition metal dichalcogenides.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"603 - 609"},"PeriodicalIF":2.1,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiyoun Kim, Jeongah Lee, Sangwoo Kim, WooChul Jung
{"title":"Improved Catalytic Properties of Fluorine-Doped La0.6Sr0.4Co0.2Fe0.8O3-δ for Air Electrode with High-Performance Metal-Air Batteries","authors":"Jiyoun Kim, Jeongah Lee, Sangwoo Kim, WooChul Jung","doi":"10.1007/s13391-023-00483-8","DOIUrl":"10.1007/s13391-023-00483-8","url":null,"abstract":"<div><p>La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> (LSCF), a perovskite material, is widely recognized as an excellent catalyst for the oxygen evolution reaction (OER). An anion doping strategy was implemented to enhance the presence of highly oxidation-active O<sup>2−</sup>/O<sup>−</sup> species crucial for the electrochemical reaction, effectively replacing oxygen. The introduction of 5 mol% fluorine to LSCF resulted in improved OER performance, comparable to that of commercial noble catalysts. Furthermore, we confirmed that fluorine-doped LSCF enhanced the oxygen reduction reaction (ORR) performance, establishing its effectiveness as a bifunctional catalyst. Moreover, when utilized as an air electrode in a homemade zinc-air battery cell, the electrochemical performance of the doped LSCF remained stable after repeated charge/discharge tests. These findings underscore the potential application of anion doping in electrochemical devices.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 4","pages":"450 - 458"},"PeriodicalIF":2.1,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13391-023-00483-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large-Area Quantum Dot Light-Emitting Diodes Employing Sputtered Zn0.85Mg0.15O Electron Transport Material","authors":"Bomi Kim, Jiwan Kim","doi":"10.1007/s13391-023-00482-9","DOIUrl":"10.1007/s13391-023-00482-9","url":null,"abstract":"<div><p>We report a large-area quantum dot light-emitting diode (QLED) with sputtered Zn<sub>0.85</sub>Mg<sub>0.15</sub>O (ZMO) as an electron transport layer (ETL). Uniform ZMO is applied as ETL of the inverted structured QLED and the adjustment of Ar/O<sub>2</sub> ratio on device characteristics is studied in detail. Compared to pristine ZMO, ZMOs with O<sub>2</sub> gas are found to be beneficial to the charge balance in the emitting layer of QLEDs mainly by their upshifted conduction band minimum, which in turn limits an electron injection. Additionally, it is found that oxygen vacancies in the ZMO, acting as the exciton quenching sites, are responsible for the device stability. QLEDs with 6:1 ZMO produce a maximum luminance of 136,257 cd/m<sup>2</sup> and external quantum efficiency of 5.15%, which are the best device performances to date among QLEDs with sputtered ETLs. These results indicate that the sputtered ZMO shows great promise for use as an inorganic ETL for future large-area QLEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"140 - 149"},"PeriodicalIF":2.1,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139588696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}