用于紫外线光伏的 Tl3PbI5 纳米晶体

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wooyeon Kim, Bonkee Koo, Jaeyeon Kim, In Choi, Seongyeon Hwang, Min Jae Ko
{"title":"用于紫外线光伏的 Tl3PbI5 纳米晶体","authors":"Wooyeon Kim,&nbsp;Bonkee Koo,&nbsp;Jaeyeon Kim,&nbsp;In Choi,&nbsp;Seongyeon Hwang,&nbsp;Min Jae Ko","doi":"10.1007/s13391-024-00499-8","DOIUrl":null,"url":null,"abstract":"<div><p>Tl<sub>3</sub>PbI<sub>5</sub> exhibits a bandgap energy suitable for absorbing visible and ultraviolet spectra along with a high absorption capability, rendering it a promising candidate for a broader range of solar energy applications. However, its applicability as a light absorber in solar cells is yet to be experimentally confirmed. In this study, we systemically investigate the synthesis process and the crystallographic and chemical properties of Tl<sub>3</sub>PbI<sub>5</sub> nanocrystals. These results enable the optimization of Tl<sub>3</sub>PbI<sub>5</sub> nanocrystals for use as a light absorber. In addition, a solid-state ligand exchange method employing methyl acetate (MeOAc) is introduced to construct a Tl<sub>3</sub>PbI<sub>5</sub> absorption layer for photovoltaic applications. This method facilitates the preparation of multilayer thin films with precise thickness control. The optimally designed Tl<sub>3</sub>PbI<sub>5</sub>-based solar cell achieves a power conversion efficiency (<i>PCE</i>) of 0.20%. Furthermore, the device retains over 90% of its <i>PCE</i> after 2000 h at 25 °C and 60% relative humidity, indicating the potential of Tl<sub>3</sub>PbI<sub>5</sub>-based photovoltaics for reliable solar energy harvesting.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"584 - 591"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tl3PbI5 Nanocrystals for Ultraviolet Photovoltaics\",\"authors\":\"Wooyeon Kim,&nbsp;Bonkee Koo,&nbsp;Jaeyeon Kim,&nbsp;In Choi,&nbsp;Seongyeon Hwang,&nbsp;Min Jae Ko\",\"doi\":\"10.1007/s13391-024-00499-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tl<sub>3</sub>PbI<sub>5</sub> exhibits a bandgap energy suitable for absorbing visible and ultraviolet spectra along with a high absorption capability, rendering it a promising candidate for a broader range of solar energy applications. However, its applicability as a light absorber in solar cells is yet to be experimentally confirmed. In this study, we systemically investigate the synthesis process and the crystallographic and chemical properties of Tl<sub>3</sub>PbI<sub>5</sub> nanocrystals. These results enable the optimization of Tl<sub>3</sub>PbI<sub>5</sub> nanocrystals for use as a light absorber. In addition, a solid-state ligand exchange method employing methyl acetate (MeOAc) is introduced to construct a Tl<sub>3</sub>PbI<sub>5</sub> absorption layer for photovoltaic applications. This method facilitates the preparation of multilayer thin films with precise thickness control. The optimally designed Tl<sub>3</sub>PbI<sub>5</sub>-based solar cell achieves a power conversion efficiency (<i>PCE</i>) of 0.20%. Furthermore, the device retains over 90% of its <i>PCE</i> after 2000 h at 25 °C and 60% relative humidity, indicating the potential of Tl<sub>3</sub>PbI<sub>5</sub>-based photovoltaics for reliable solar energy harvesting.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 5\",\"pages\":\"584 - 591\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-024-00499-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00499-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Tl3PbI5 具有适合吸收可见光和紫外线光谱的带隙能量以及高吸收能力,因此有望在更广泛的太阳能应用领域大显身手。然而,它在太阳能电池中作为光吸收剂的适用性还有待实验证实。在本研究中,我们系统地研究了 Tl3PbI5 纳米晶体的合成过程、晶体学和化学特性。这些结果有助于优化 Tl3PbI5 纳米晶体作为光吸收剂的用途。此外,还介绍了一种采用醋酸甲酯(MeOAc)的固态配体交换方法,以构建用于光伏应用的 Tl3PbI5 吸收层。这种方法有助于制备具有精确厚度控制的多层薄膜。经过优化设计的基于 Tl3PbI5 的太阳能电池实现了 0.20% 的功率转换效率 (PCE)。此外,该装置在 25 °C 和 60% 相对湿度条件下工作 2000 小时后,其 PCE 仍保持在 90% 以上,这表明基于 Tl3PbI5 的光伏器件具有可靠的太阳能收集潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tl3PbI5 Nanocrystals for Ultraviolet Photovoltaics

Tl3PbI5 Nanocrystals for Ultraviolet Photovoltaics

Tl3PbI5 exhibits a bandgap energy suitable for absorbing visible and ultraviolet spectra along with a high absorption capability, rendering it a promising candidate for a broader range of solar energy applications. However, its applicability as a light absorber in solar cells is yet to be experimentally confirmed. In this study, we systemically investigate the synthesis process and the crystallographic and chemical properties of Tl3PbI5 nanocrystals. These results enable the optimization of Tl3PbI5 nanocrystals for use as a light absorber. In addition, a solid-state ligand exchange method employing methyl acetate (MeOAc) is introduced to construct a Tl3PbI5 absorption layer for photovoltaic applications. This method facilitates the preparation of multilayer thin films with precise thickness control. The optimally designed Tl3PbI5-based solar cell achieves a power conversion efficiency (PCE) of 0.20%. Furthermore, the device retains over 90% of its PCE after 2000 h at 25 °C and 60% relative humidity, indicating the potential of Tl3PbI5-based photovoltaics for reliable solar energy harvesting.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信