Dong-Kwan Lee, Jongchan Yoo, Byung-Ho Kang, Sung-Hoon Park
{"title":"Effects of the Number of Graphene Layers and Graphene Diaphragm Size on High Frequency Electrostatic Speakers","authors":"Dong-Kwan Lee, Jongchan Yoo, Byung-Ho Kang, Sung-Hoon Park","doi":"10.1007/s13391-024-00501-3","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene, a promising carbon nanomaterial, has garnered significant attention owing to its chemical stability, exceptional mechanical properties, and remarkable electrical conductivity and is being used in various electrical engineering applications ranging from solar cells to touch screens. The inherent mechanical strength and electric charge capacity of graphene enable efficient designs of diaphragms used in electrostatic loudspeakers, specifically within the high-frequency domain. This study incorporated single-layer and multi-layer graphene sheets, synthesized via chemical vapor deposition, as electrically charged diaphragms in electrostatic loudspeakers paired with an indium tin oxide film electrode to produce Coulomb force. Subsequently, the sound pressure levels of these distinct graphene- based electrostatic loudspeakers were determined through frequency response measurements. Based on our findings, we propose an optimal graphene film configuration for future electrostatic loudspeaker applications.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"621 - 626"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00501-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene, a promising carbon nanomaterial, has garnered significant attention owing to its chemical stability, exceptional mechanical properties, and remarkable electrical conductivity and is being used in various electrical engineering applications ranging from solar cells to touch screens. The inherent mechanical strength and electric charge capacity of graphene enable efficient designs of diaphragms used in electrostatic loudspeakers, specifically within the high-frequency domain. This study incorporated single-layer and multi-layer graphene sheets, synthesized via chemical vapor deposition, as electrically charged diaphragms in electrostatic loudspeakers paired with an indium tin oxide film electrode to produce Coulomb force. Subsequently, the sound pressure levels of these distinct graphene- based electrostatic loudspeakers were determined through frequency response measurements. Based on our findings, we propose an optimal graphene film configuration for future electrostatic loudspeaker applications.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.