C. Sambathkumar, K. R. Nagavenkatesh, R. Thangavel, N. Nallamuthu, P. Devendran, K. Rajesh
{"title":"用于高密度储能的纳米结构 RuO2、NiO 和 Co3O4 纳米粒子的电荷存储性能调查与比较研究","authors":"C. Sambathkumar, K. R. Nagavenkatesh, R. Thangavel, N. Nallamuthu, P. Devendran, K. Rajesh","doi":"10.1007/s13391-024-00500-4","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing energy requirement and over energy consumption and further upgrading of energy transfer and storage mechanisms are the critical problem. The supercapacitor is a good candidate for applications requiring high power delivery or uptake. Metal oxides can be effective electrode materials for energy storage devices due to their multiple oxidation states, high theoretical specific capacitance, wide potential window and eco-friendliness. In this connection, here report that electrodes made of notable nanosized transition metal oxides such as Ruthenium oxide (RuO<sub>2</sub>), Nickel oxide (NiO) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) were prepared by simple hydrothermal route and the prepared samples were confirmed through structural, vibrational, morphological, and elemental composition analysis. The modified working electrodes were then examined for electrochemical behavior, including CV, GCD, and EIS studies, using a 1 M KOH electrolyte solution after successive coating of the working material on empty Ni foil. Among them, RuO<sub>2</sub> has high integral area, a low sweep rate and remarkable specific capacitance value of 447.1 Fg<sup>-1</sup> at 5 mVs<sup>-1</sup> in CV analysis. In addition, the GCD curve has good charge-discharge cyclic stability with a maximum specific capacitance of 412.1 Fg<sup>-1</sup> at 0.5 Ag<sup>-1</sup> compared to NiO and Co<sub>3</sub>O<sub>4</sub>. RuO<sub>2</sub> has long charge-discharge stability and only 6.8% loss in capacitive retention compared to the other systems, NiO (11.2%) and Co<sub>3</sub>O<sub>4</sub> (9.3%), even after 10,000 cycles. We except that use of nanosized metal oxide electrodes to enhance electrochemical activity will lead to further improvement in the supercapacitors.</p></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 5","pages":"571 - 583"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation and Comparative Studies on Charge Storage Performance in Nanostructured RuO2, NiO and Co3O4 Nanoparticles for High Dense Energy Storage\",\"authors\":\"C. Sambathkumar, K. R. Nagavenkatesh, R. Thangavel, N. Nallamuthu, P. Devendran, K. Rajesh\",\"doi\":\"10.1007/s13391-024-00500-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing energy requirement and over energy consumption and further upgrading of energy transfer and storage mechanisms are the critical problem. The supercapacitor is a good candidate for applications requiring high power delivery or uptake. Metal oxides can be effective electrode materials for energy storage devices due to their multiple oxidation states, high theoretical specific capacitance, wide potential window and eco-friendliness. In this connection, here report that electrodes made of notable nanosized transition metal oxides such as Ruthenium oxide (RuO<sub>2</sub>), Nickel oxide (NiO) and Cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) were prepared by simple hydrothermal route and the prepared samples were confirmed through structural, vibrational, morphological, and elemental composition analysis. The modified working electrodes were then examined for electrochemical behavior, including CV, GCD, and EIS studies, using a 1 M KOH electrolyte solution after successive coating of the working material on empty Ni foil. Among them, RuO<sub>2</sub> has high integral area, a low sweep rate and remarkable specific capacitance value of 447.1 Fg<sup>-1</sup> at 5 mVs<sup>-1</sup> in CV analysis. In addition, the GCD curve has good charge-discharge cyclic stability with a maximum specific capacitance of 412.1 Fg<sup>-1</sup> at 0.5 Ag<sup>-1</sup> compared to NiO and Co<sub>3</sub>O<sub>4</sub>. RuO<sub>2</sub> has long charge-discharge stability and only 6.8% loss in capacitive retention compared to the other systems, NiO (11.2%) and Co<sub>3</sub>O<sub>4</sub> (9.3%), even after 10,000 cycles. We except that use of nanosized metal oxide electrodes to enhance electrochemical activity will lead to further improvement in the supercapacitors.</p></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 5\",\"pages\":\"571 - 583\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-024-00500-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-024-00500-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation and Comparative Studies on Charge Storage Performance in Nanostructured RuO2, NiO and Co3O4 Nanoparticles for High Dense Energy Storage
Increasing energy requirement and over energy consumption and further upgrading of energy transfer and storage mechanisms are the critical problem. The supercapacitor is a good candidate for applications requiring high power delivery or uptake. Metal oxides can be effective electrode materials for energy storage devices due to their multiple oxidation states, high theoretical specific capacitance, wide potential window and eco-friendliness. In this connection, here report that electrodes made of notable nanosized transition metal oxides such as Ruthenium oxide (RuO2), Nickel oxide (NiO) and Cobalt oxide (Co3O4) were prepared by simple hydrothermal route and the prepared samples were confirmed through structural, vibrational, morphological, and elemental composition analysis. The modified working electrodes were then examined for electrochemical behavior, including CV, GCD, and EIS studies, using a 1 M KOH electrolyte solution after successive coating of the working material on empty Ni foil. Among them, RuO2 has high integral area, a low sweep rate and remarkable specific capacitance value of 447.1 Fg-1 at 5 mVs-1 in CV analysis. In addition, the GCD curve has good charge-discharge cyclic stability with a maximum specific capacitance of 412.1 Fg-1 at 0.5 Ag-1 compared to NiO and Co3O4. RuO2 has long charge-discharge stability and only 6.8% loss in capacitive retention compared to the other systems, NiO (11.2%) and Co3O4 (9.3%), even after 10,000 cycles. We except that use of nanosized metal oxide electrodes to enhance electrochemical activity will lead to further improvement in the supercapacitors.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.