{"title":"Large \u0000 \u0000 x\u0000 $x$\u0000 Asymptotics of the Soliton Gas for the Nonlinear Schrödinger Equation","authors":"Xiaofeng Han, Xiaoen Zhang, Huanhe Dong","doi":"10.1111/sapm.70027","DOIUrl":"https://doi.org/10.1111/sapm.70027","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we construct a Riemann–Hilbert problem of the soliton gas for the nonlinear Schrödinger equation, derived by taking the limit of the <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> soliton solutions as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$nrightarrow infty$</annotation>\u0000 </semantics></math>. The discrete spectra corresponding to the soliton solutions are located in four disjoint intervals on the imaginary axis, which are symmetric about the real axis. We analyze the large <span></span><math>\u0000 <semantics>\u0000 <mi>x</mi>\u0000 <annotation>$x$</annotation>\u0000 </semantics></math> asymptotics by setting the time variable <span></span><math>\u0000 <semantics>\u0000 <mi>t</mi>\u0000 <annotation>$t$</annotation>\u0000 </semantics></math> to zero. Using the Deift–Zhou nonlinear steepest-descent method, we find that the large <span></span><math>\u0000 <semantics>\u0000 <mi>x</mi>\u0000 <annotation>$x$</annotation>\u0000 </semantics></math> asymptotics at <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$t=0$</annotation>\u0000 </semantics></math> behave differently, as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$xrightarrow infty$</annotation>\u0000 </semantics></math>, the asymptotics decays to the zero background exponentially, while as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>→</mo>\u0000 <mo>−</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$xrightarrow -infty$</annotation>\u0000 </semantics></math>, the leading-order term can be expressed with a Riemann-theta function of genus three. In the conclusion, we expand this case to the general <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> intervals and conjecture on the large <span></span><math>\u0000 <semantics>\u0000 <mi>x</mi>\u0000 <annotation>$x$</annotation>\u0000 </semantics></math> asymptotics.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}