{"title":"Dynamics Analysis for Diffusive Resource-Consumer Model With Nonlocal Discrete Memory","authors":"Haihui Wu, Xiaoqin Shen, Aili Wang, Qian Li","doi":"10.1111/sapm.70030","DOIUrl":"https://doi.org/10.1111/sapm.70030","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, based on the importance of consumer memory on spatial resource distribution, we propose a novel consumer-resource model that incorporates nonlocal discrete memory. By conducting thorough bifurcation and stability analysis, we determine the conditions for the occurrence of Hopf and Turing bifurcations and reveal a unique dynamic phenomenon termed Turing–Hopf bifurcation, which is uncommon in models without nonlocal discrete memory. We also show that as the memory delay increases, both the spatially nonhomogeneous periodic and steady-state solutions may vanish, and the unstable positive homogeneous steady state may regain stability. Furthermore, leveraging the theory of normal forms, we derive a new effective algorithm to determine the direction and stability of Hopf bifurcation in a model where the diffusion component incorporates an integral term with delay. In addition, we perform numerical simulations to validate our theoretical findings, particularly to assess the direction and stability of the delay-induced mode-1 Hopf bifurcation. Our new method is used for this purpose, and the results have been confirmed by rigorous numerical analysis.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp Rate of the Accelerating Propagation for a Recursive System","authors":"Na Li, Yingli Pan, Ying Su","doi":"10.1111/sapm.70029","DOIUrl":"https://doi.org/10.1111/sapm.70029","url":null,"abstract":"<div>\u0000 \u0000 <p>How to characterize the rate of accelerating propagation in recursive systems is a challenging topic though it has attracted great attention of theoretical and empirical ecologists. In this paper, we determine the sharp rate of accelerating propagation for a unimodal recursive system with a heavy-tailed dispersal kernel <span></span><math>\u0000 <semantics>\u0000 <mi>J</mi>\u0000 <annotation>$J$</annotation>\u0000 </semantics></math> through tracking of level sets of solutions with compactly supported initial data. It turns out that the solution level set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>λ</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$E_{lambda }(n)$</annotation>\u0000 </semantics></math> satisfies <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>J</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mi>λ</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∼</mo>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <msup>\u0000 <mi>ρ</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$J(E_lambda (n))sim e^{-rho ^* n}$</annotation>\u0000 </semantics></math> for large <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>λ</mi>\u0000 <annotation>$lambda$</annotation>\u0000 </semantics></math> is the level and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ρ</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$rho ^*$</annotation>\u0000 </semantics></math> is determined by the linearized system at zero.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large \u0000 \u0000 x\u0000 $x$\u0000 Asymptotics of the Soliton Gas for the Nonlinear Schrödinger Equation","authors":"Xiaofeng Han, Xiaoen Zhang, Huanhe Dong","doi":"10.1111/sapm.70027","DOIUrl":"https://doi.org/10.1111/sapm.70027","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we construct a Riemann–Hilbert problem of the soliton gas for the nonlinear Schrödinger equation, derived by taking the limit of the <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> soliton solutions as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$nrightarrow infty$</annotation>\u0000 </semantics></math>. The discrete spectra corresponding to the soliton solutions are located in four disjoint intervals on the imaginary axis, which are symmetric about the real axis. We analyze the large <span></span><math>\u0000 <semantics>\u0000 <mi>x</mi>\u0000 <annotation>$x$</annotation>\u0000 </semantics></math> asymptotics by setting the time variable <span></span><math>\u0000 <semantics>\u0000 <mi>t</mi>\u0000 <annotation>$t$</annotation>\u0000 </semantics></math> to zero. Using the Deift–Zhou nonlinear steepest-descent method, we find that the large <span></span><math>\u0000 <semantics>\u0000 <mi>x</mi>\u0000 <annotation>$x$</annotation>\u0000 </semantics></math> asymptotics at <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$t=0$</annotation>\u0000 </semantics></math> behave differently, as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$xrightarrow infty$</annotation>\u0000 </semantics></math>, the asymptotics decays to the zero background exponentially, while as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>x</mi>\u0000 <mo>→</mo>\u0000 <mo>−</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$xrightarrow -infty$</annotation>\u0000 </semantics></math>, the leading-order term can be expressed with a Riemann-theta function of genus three. In the conclusion, we expand this case to the general <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> intervals and conjecture on the large <span></span><math>\u0000 <semantics>\u0000 <mi>x</mi>\u0000 <annotation>$x$</annotation>\u0000 </semantics></math> asymptotics.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}