Breather and Rogue Wave Solutions on the Different Periodic Backgrounds in the Focusing Nonlinear Schrödinger Equation

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Fang-Cheng Fan, Wang Tang, Guo-Fu Yu
{"title":"Breather and Rogue Wave Solutions on the Different Periodic Backgrounds in the Focusing Nonlinear Schrödinger Equation","authors":"Fang-Cheng Fan,&nbsp;Wang Tang,&nbsp;Guo-Fu Yu","doi":"10.1111/sapm.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we construct breather and rogue wave solutions on the different periodic backgrounds in the focusing nonlinear Schrödinger equation by using the Darboux transformation. First, we present solutions of the Lax pair related to the periodic seed solutions with trivial and nontrivial phases. In this process, different from the previous approaches of employing the nonlinearization of the Lax pair or the traveling wave transformation, we mainly combine the proper assumption with the method of separation of variables. This strategy is more direct and simpler and can be extended to other nonlinear integrable equations. Second, we construct the Kuznetsov–Ma breather and the spatiotemporally periodic breather on the periodic background. Their asymptotic expressions are obtained, which can be used to show that the related nonlinear waves appear on the periodic background. The corresponding dynamical properties and evolution states are illustrated graphically. Finally, at branch points of breathers, the rogue waves on the periodic background are derived and their characteristics are analyzed. For breather and rogue wave solutions, we both investigate the relationship between parameters and solutions' structures and the limits when the elliptic modulus approach to 0 and 1. All the results in this paper might be helpful for us to understand the dynamics of breathers and rogue waves on the periodic background.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we construct breather and rogue wave solutions on the different periodic backgrounds in the focusing nonlinear Schrödinger equation by using the Darboux transformation. First, we present solutions of the Lax pair related to the periodic seed solutions with trivial and nontrivial phases. In this process, different from the previous approaches of employing the nonlinearization of the Lax pair or the traveling wave transformation, we mainly combine the proper assumption with the method of separation of variables. This strategy is more direct and simpler and can be extended to other nonlinear integrable equations. Second, we construct the Kuznetsov–Ma breather and the spatiotemporally periodic breather on the periodic background. Their asymptotic expressions are obtained, which can be used to show that the related nonlinear waves appear on the periodic background. The corresponding dynamical properties and evolution states are illustrated graphically. Finally, at branch points of breathers, the rogue waves on the periodic background are derived and their characteristics are analyzed. For breather and rogue wave solutions, we both investigate the relationship between parameters and solutions' structures and the limits when the elliptic modulus approach to 0 and 1. All the results in this paper might be helpful for us to understand the dynamics of breathers and rogue waves on the periodic background.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信