{"title":"递归系统加速传播的急剧速率","authors":"Na Li, Yingli Pan, Ying Su","doi":"10.1111/sapm.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>How to characterize the rate of accelerating propagation in recursive systems is a challenging topic though it has attracted great attention of theoretical and empirical ecologists. In this paper, we determine the sharp rate of accelerating propagation for a unimodal recursive system with a heavy-tailed dispersal kernel <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> through tracking of level sets of solutions with compactly supported initial data. It turns out that the solution level set <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>λ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_{\\lambda }(n)$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mi>λ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>∼</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <msup>\n <mi>ρ</mi>\n <mo>∗</mo>\n </msup>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$J(E_\\lambda (n))\\sim e^{-\\rho ^* n}$</annotation>\n </semantics></math> for large <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math> is the level and <span></span><math>\n <semantics>\n <msup>\n <mi>ρ</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$\\rho ^*$</annotation>\n </semantics></math> is determined by the linearized system at zero.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp Rate of the Accelerating Propagation for a Recursive System\",\"authors\":\"Na Li, Yingli Pan, Ying Su\",\"doi\":\"10.1111/sapm.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>How to characterize the rate of accelerating propagation in recursive systems is a challenging topic though it has attracted great attention of theoretical and empirical ecologists. In this paper, we determine the sharp rate of accelerating propagation for a unimodal recursive system with a heavy-tailed dispersal kernel <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math> through tracking of level sets of solutions with compactly supported initial data. It turns out that the solution level set <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>λ</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$E_{\\\\lambda }(n)$</annotation>\\n </semantics></math> satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>J</mi>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mi>λ</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>∼</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <msup>\\n <mi>ρ</mi>\\n <mo>∗</mo>\\n </msup>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$J(E_\\\\lambda (n))\\\\sim e^{-\\\\rho ^* n}$</annotation>\\n </semantics></math> for large <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$\\\\lambda$</annotation>\\n </semantics></math> is the level and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>ρ</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$\\\\rho ^*$</annotation>\\n </semantics></math> is determined by the linearized system at zero.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70029\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sharp Rate of the Accelerating Propagation for a Recursive System
How to characterize the rate of accelerating propagation in recursive systems is a challenging topic though it has attracted great attention of theoretical and empirical ecologists. In this paper, we determine the sharp rate of accelerating propagation for a unimodal recursive system with a heavy-tailed dispersal kernel through tracking of level sets of solutions with compactly supported initial data. It turns out that the solution level set satisfies for large , where is the level and is determined by the linearized system at zero.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.