Smoothing of the Higher-Order Stokes Phenomenon

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Chris J. Howls, John R. King, Gergő Nemes, Adri B. Olde Daalhuis
{"title":"Smoothing of the Higher-Order Stokes Phenomenon","authors":"Chris J. Howls,&nbsp;John R. King,&nbsp;Gergő Nemes,&nbsp;Adri B. Olde Daalhuis","doi":"10.1111/sapm.70008","DOIUrl":null,"url":null,"abstract":"<p>For over a century, the Stokes phenomenon had been perceived as a discontinuous change in the asymptotic representation of a function. In 1989, Berry demonstrated it is possible to smooth this discontinuity in broad classes of problems with the prefactor for the exponentially small contribution switching on/off taking a universal error function form. Following pioneering work of Berk, Nevins, and Roberts and the Japanese school of formally exact asymptotics, the concept of the higher-order Stokes phenomenon was introduced, whereby the ability for the exponentially small terms to cause a Stokes phenomenon may change, depending on the values of parameters in the problem, corresponding to the associated Borel-plane singularities transitioning between Riemann sheets. Until now, the higher-order Stokes phenomenon has also been treated as a discontinuous event. In this paper, we show how the higher-order Stokes phenomenon is also smooth and occurs universally with a prefactor that takes the form of a new special function, based on a Gaussian convolution of an error function. We provide a rigorous derivation of the result, with examples spanning the gamma function, a second-order nonlinear ODE, and the telegraph equation, giving rise to a ghost-like smooth contribution present in the vicinity of a Stokes line, but which rapidly tends to zero on either side. We also include a rigorous derivation of the effect of the smoothed higher-order Stokes phenomenon on the individual terms in the asymptotic series, where the additional contributions appear prefactored by an error function.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For over a century, the Stokes phenomenon had been perceived as a discontinuous change in the asymptotic representation of a function. In 1989, Berry demonstrated it is possible to smooth this discontinuity in broad classes of problems with the prefactor for the exponentially small contribution switching on/off taking a universal error function form. Following pioneering work of Berk, Nevins, and Roberts and the Japanese school of formally exact asymptotics, the concept of the higher-order Stokes phenomenon was introduced, whereby the ability for the exponentially small terms to cause a Stokes phenomenon may change, depending on the values of parameters in the problem, corresponding to the associated Borel-plane singularities transitioning between Riemann sheets. Until now, the higher-order Stokes phenomenon has also been treated as a discontinuous event. In this paper, we show how the higher-order Stokes phenomenon is also smooth and occurs universally with a prefactor that takes the form of a new special function, based on a Gaussian convolution of an error function. We provide a rigorous derivation of the result, with examples spanning the gamma function, a second-order nonlinear ODE, and the telegraph equation, giving rise to a ghost-like smooth contribution present in the vicinity of a Stokes line, but which rapidly tends to zero on either side. We also include a rigorous derivation of the effect of the smoothed higher-order Stokes phenomenon on the individual terms in the asymptotic series, where the additional contributions appear prefactored by an error function.

Abstract Image

高阶Stokes现象的平滑
一个多世纪以来,斯托克斯现象一直被认为是函数渐近表示中的不连续变化。1989年,Berry证明了在广泛的问题类别中平滑这种不连续是可能的,指数小贡献开关的前因子采用通用误差函数形式。在Berk, Nevins和Roberts以及日本正式精确渐近学派的开创性工作之后,引入了高阶Stokes现象的概念,由此指数小项引起Stokes现象的能力可能会发生变化,这取决于问题中参数的值,对应于相关的borelplane奇点在黎曼片之间的转换。到目前为止,高阶斯托克斯现象也被视为一个不连续事件。在本文中,我们证明了高阶Stokes现象是光滑的,并且是普遍存在的,其前因子是基于误差函数的高斯卷积的一个新的特殊函数形式。我们对结果进行了严格的推导,并给出了跨越伽马函数、二阶非线性ODE和电报方程的例子,从而在Stokes线附近产生了幽灵般的光滑贡献,但在任何一侧都迅速趋于零。我们还包括光滑的高阶Stokes现象对渐近级数中单个项的影响的严格推导,其中附加的贡献似乎由误差函数预因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信