Nonlinear Fourier Transforms for the Sawada–Kotera Equation on the Line

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Lin Huang, Deng-Shan Wang, Xiaodong Zhu
{"title":"Nonlinear Fourier Transforms for the Sawada–Kotera Equation on the Line","authors":"Lin Huang,&nbsp;Deng-Shan Wang,&nbsp;Xiaodong Zhu","doi":"10.1111/sapm.70075","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a Riemann–Hilbert (RH) problem formalism for the initial value problem of the Sawada–Kotera equation defined on the real line. Assuming the existence of a solution, we establish that this solution can be effectively represented by solving a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3 \\times 3$</annotation>\n </semantics></math> matrix RH problem. Notably, the formulation of this RH problem involves four spectral functions: <span></span><math>\n <semantics>\n <msub>\n <mi>s</mi>\n <mn>32</mn>\n </msub>\n <annotation>$s_{32}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>s</mi>\n <mn>33</mn>\n </msub>\n <annotation>$s_{33}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msubsup>\n <mi>s</mi>\n <mn>32</mn>\n <mi>A</mi>\n </msubsup>\n <annotation>$s^A_{32}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msubsup>\n <mi>s</mi>\n <mn>33</mn>\n <mi>A</mi>\n </msubsup>\n <annotation>$s^A_{33}$</annotation>\n </semantics></math>, which are obtained via a nonlinear Fourier transform applied to the initial data. Furthermore, this study conducts a detailed spectral analysis, providing a foundation for the application of the nonlinear steepest descent method to determine the long-time asymptotic behavior of solutions to the Sawada–Kotera equation on the real line.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Riemann–Hilbert (RH) problem formalism for the initial value problem of the Sawada–Kotera equation defined on the real line. Assuming the existence of a solution, we establish that this solution can be effectively represented by solving a 3 × 3 $3 \times 3$ matrix RH problem. Notably, the formulation of this RH problem involves four spectral functions: s 32 $s_{32}$ , s 33 $s_{33}$ , s 32 A $s^A_{32}$ , and s 33 A $s^A_{33}$ , which are obtained via a nonlinear Fourier transform applied to the initial data. Furthermore, this study conducts a detailed spectral analysis, providing a foundation for the application of the nonlinear steepest descent method to determine the long-time asymptotic behavior of solutions to the Sawada–Kotera equation on the real line.

直线上Sawada-Kotera方程的非线性傅里叶变换
本文给出了定义在实直线上的Sawada-Kotera方程初值问题的一个Riemann-Hilbert (RH)问题形式。假设解存在,我们建立了该解可以有效地表示为求解一个3 × 3$ 3 \ × 3$矩阵RH问题。值得注意的是,该RH问题的表述涉及四个谱函数:s 32 $s_{32}$, s 33 $s_{33}$, s 32 $ A $s^A_{32}$,和s 33 A $s^A_{33}$,这是通过对初始数据进行非线性傅里叶变换得到的。此外,本文还进行了详细的谱分析,为应用非线性最陡下降法确定Sawada-Kotera方程解在实线上的长期渐近行为奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信