Studies in Applied Mathematics最新文献

筛选
英文 中文
Issue Information-TOC 问题Information-TOC
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-07-03 DOI: 10.1111/sapm.70080
{"title":"Issue Information-TOC","authors":"","doi":"10.1111/sapm.70080","DOIUrl":"https://doi.org/10.1111/sapm.70080","url":null,"abstract":"","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144551140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N Double-Pole Solutions of the Matrix-Type Nonlinear Schrödinger Equation Under Zero and Nonzero Boundary Conditions 零和非零边界条件下矩阵型非线性Schrödinger方程的N个双极解
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-19 DOI: 10.1111/sapm.70067
Guofei Zhang, Jingsong He, Yi Cheng
{"title":"N Double-Pole Solutions of the Matrix-Type Nonlinear Schrödinger Equation Under Zero and Nonzero Boundary Conditions","authors":"Guofei Zhang, Jingsong He, Yi Cheng","doi":"10.1111/sapm.70067","DOIUrl":"https://doi.org/10.1111/sapm.70067","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, Riemann–Hilbert (RH) method is developed for the initial value problem of matrix-type nonlinear Schrödinger equation with discrete spectrum as double poles under zero and nonzero boundary conditions, respectively, which all include the process of direct scattering(the analyticity, symmetries and asymptotics of the Jost function, scattering, and reflection coefficients) and inverse scattering (residue conditions, norming constants, RH problem, and the reconstruction formula). Since the object of study is a matrix-type system, we will point out the similarities and differences between it and the RH method in the study of scalar and vector equations, such as we have to assume that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>+</mo>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$k=k_{n}in mathbb {C}^{+}$</annotation>\u0000 </semantics></math> is a third order zero of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>det</mo>\u0000 <mi>a</mi>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$det a(k)$</annotation>\u0000 </semantics></math> under <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>rank</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>P</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mi>t</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 <mfenced>\u0000 <mo>⇔</mo>\u0000 <mi>rank</mi>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mfenced>\u0000 </mrow>\u0000 <annotation>$mathrm{rank} (P(x,t,k_{n}))=2 left(Leftrightarrow mathrm{rank}(a(k_{n}))=0 right)$</annotation>\u0000 ","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144315220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soliton Solutions Associated With a Class of Third-Order Ordinary Linear Differential Operators 一类三阶常线性微分算子的孤子解
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-17 DOI: 10.1111/sapm.70057
Tuncay Aktosun, Abdon E. Choque-Rivero, Ivan Toledo, Mehmet Unlu
{"title":"Soliton Solutions Associated With a Class of Third-Order Ordinary Linear Differential Operators","authors":"Tuncay Aktosun,&nbsp;Abdon E. Choque-Rivero,&nbsp;Ivan Toledo,&nbsp;Mehmet Unlu","doi":"10.1111/sapm.70057","DOIUrl":"https://doi.org/10.1111/sapm.70057","url":null,"abstract":"<div>\u0000 \u0000 <p>Explicit solutions to the related integrable nonlinear evolution equations are constructed by solving the inverse scattering problem in the reflectionless case for the third-order differential equation <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>d</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <mi>ψ</mi>\u0000 <mo>/</mo>\u0000 <mi>d</mi>\u0000 <msup>\u0000 <mi>x</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <mi>Q</mi>\u0000 <mspace></mspace>\u0000 <mi>d</mi>\u0000 <mi>ψ</mi>\u0000 <mo>/</mo>\u0000 <mi>d</mi>\u0000 <mi>x</mi>\u0000 <mo>+</mo>\u0000 <mi>P</mi>\u0000 <mspace></mspace>\u0000 <mi>ψ</mi>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>k</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <mi>ψ</mi>\u0000 </mrow>\u0000 <annotation>$d^3psi /dx^3+Q,dpsi /dx+P,psi =k^3psi$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$Q$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>P</mi>\u0000 <annotation>$P$</annotation>\u0000 </semantics></math> are the potentials in the Schwartz class and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>k</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$k^3$</annotation>\u0000 </semantics></math> is the spectral parameter. The input data set used to solve the relevant inverse problem consists of the bound-state poles of a transmission coefficient and the corresponding bound-state dependency constants. Using the time-evolved dependency constants, explicit solutions to the related integrable evolution equations are obtained. In the special cases of the Sawada–Kotera equation and the modified bad Boussinesq equation, the method presented here explains the physical origin of the constants appearing in the relevant <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$mathbf {N}$</annotation>\u0000 </semantics></math>-soliton solutions algebraically constructed, but without any physical insight, by the bilinear method of Hirota. </p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144300255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic Expansions Relating to the Distribution of the Product of Correlated Normal Random Variables 有关相关正态随机变量积分布的渐近展开式
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-11 DOI: 10.1111/sapm.70070
Robert E. Gaunt, Zixin Ye
{"title":"Asymptotic Expansions Relating to the Distribution of the Product of Correlated Normal Random Variables","authors":"Robert E. Gaunt,&nbsp;Zixin Ye","doi":"10.1111/sapm.70070","DOIUrl":"https://doi.org/10.1111/sapm.70070","url":null,"abstract":"<p>Asymptotic expansions are derived for the tail distribution of the product of two correlated normal random variables with nonzero means and arbitrary variances, and more generally the sum of independent copies of such random variables. Asymptotic approximations are also given for the quantile function. Numerical results are given to test the performance of the asymptotic approximations.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144264605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasilinear Differential Constraints for Parabolic Systems of Jordan-Block Type Jordan-Block型抛物型系统的拟线性微分约束
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-10 DOI: 10.1111/sapm.70072
Alessandra Rizzo, Pierandrea Vergallo
{"title":"Quasilinear Differential Constraints for Parabolic Systems of Jordan-Block Type","authors":"Alessandra Rizzo,&nbsp;Pierandrea Vergallo","doi":"10.1111/sapm.70072","DOIUrl":"https://doi.org/10.1111/sapm.70072","url":null,"abstract":"<p>We prove that linear degeneracy is a necessary conditions for systems in Jordan-block form to admit a compatible quasilinear differential constraint. Such condition is also sufficient for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>×</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$2times 2$</annotation>\u0000 </semantics></math> systems and turns out to be equivalent to the Hamiltonian property. Some explicit solutions of parabolic systems are herein given: two principal hierarchies arising from the associativity theory and the delta-functional reduction of the El's equation in the hard rod case are integrated.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dimension of the Disguised Toric Locus of a Reaction Network 反应网络伪装环面轨迹的维数
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-10 DOI: 10.1111/sapm.70071
Gheorghe Craciun, Abhishek Deshpande, Jiaxin Jin
{"title":"The Dimension of the Disguised Toric Locus of a Reaction Network","authors":"Gheorghe Craciun,&nbsp;Abhishek Deshpande,&nbsp;Jiaxin Jin","doi":"10.1111/sapm.70071","DOIUrl":"https://doi.org/10.1111/sapm.70071","url":null,"abstract":"<div>\u0000 \u0000 <p>Mathematical models of reaction networks are ubiquitous in applications, especially in chemistry, biochemistry, chemical engineering, ecology, and population dynamics. Under the standard assumption of <i>mass-action kinetics</i>, reaction networks give rise to general dynamical systems with polynomial right-hand side. These depend on many parameters that are difficult to estimate and can give rise to complex dynamics, including multistability, oscillations, and chaos. On the other hand, a special class of reaction systems called <i>complex-balanced systems</i> are known to exhibit remarkably stable dynamics; in particular, they have unique positive fixed points and no oscillations or chaotic dynamics. One difficulty, when trying to take advantage of the remarkable properties of complex-balanced systems, is that the set of parameters where a network satisfies complex balance may have positive codimension and therefore zero measure. To remedy this we are studying <i>disguised complex balanced systems</i> (also known as <i>disguised toric systems</i>), which may fail to be complex balanced with respect to an original reaction network <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>, but are actually complex balanced with respect to some other network <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>G</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <annotation>$G^{prime }$</annotation>\u0000 </semantics></math>, and therefore enjoy all the stability properties of complex-balanced systems. This notion is especially useful when the set of parameter values for which the network <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> gives rise to disguised toric systems (i.e., the <i>disguised toric locus</i> of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>) has codimension zero. Our primary focus is to compute the exact dimension (and therefore the codimension) of this locus. We illustrate the use of our results by applying them to Thomas-type and circadian clock models.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Gevrey-1 Estimates of Formal Series Expansions of Center Manifolds 中心流形形式级数展开的改进Gevrey-1估计
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-04 DOI: 10.1111/sapm.70063
Kristian Uldall Kristiansen
{"title":"Improved Gevrey-1 Estimates of Formal Series Expansions of Center Manifolds","authors":"Kristian Uldall Kristiansen","doi":"10.1111/sapm.70063","DOIUrl":"https://doi.org/10.1111/sapm.70063","url":null,"abstract":"&lt;p&gt;In this paper, we show that the coefficients &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$phi _n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of the formal series expansions &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mo&gt;∑&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$sum _{n=1}^infty phi _n x^nin xmathbb {C}[[x]]$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of center manifolds of planar analytic saddle-nodes grow like &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Gamma (n+a)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (after rescaling &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;annotation&gt;$x$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) as &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$nrightarrow infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Here, the quantity &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;annotation&gt;$a$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the formal analytic invariant associated with the saddle-node (following the work of Martinet and Ramis). This growth property of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$phi _n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, which ","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70063","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144206338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Multidelay Discrete Delay Differential Equations to Accurately Simulate Models With Distributed Delays 用多延迟离散延迟微分方程精确模拟具有分布延迟的模型
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-04 DOI: 10.1111/sapm.70069
Tyler Cassidy
{"title":"Using Multidelay Discrete Delay Differential Equations to Accurately Simulate Models With Distributed Delays","authors":"Tyler Cassidy","doi":"10.1111/sapm.70069","DOIUrl":"https://doi.org/10.1111/sapm.70069","url":null,"abstract":"<p>Delayed processes are ubiquitous throughout biology. These delays may arise through maturation processes or as the result of complex multistep networks, and mathematical models with distributed delays are increasingly used to capture the heterogeneity present in these delayed processes. Typically, these distributed delay differential equations are simulated by discretizing the distributed delay and using existing tools for the resulting multidelay delay differential equations or by using an equivalent representation under additional assumptions on the delayed process. Here, we use the existing framework of functional continuous Runge–Kutta methods to confirm the convergence of this common approach. Our analysis formalizes the intuition that the least accurate numerical method dominates the error. We give a number of examples to illustrate the predicted convergence, derive a new class of equivalences between distributed delay and discrete delay differential equations, and give conditions for the existence of breaking points in the distributed delay differential equation. Finally, our work shows how recently reported multidelay complexity collapse arises naturally from the convergence of equations with multiple discrete delays to equations with distributed delays, offering insight into the dynamics of the Mackey–Glass equation.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144206340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Dynamics of Predator–Prey Systems With Antipredation Strategy in Open Advective Environments 开放平流环境中具有反捕食策略的捕食-食饵系统的全局动力学
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-04 DOI: 10.1111/sapm.70068
Zhongyuan Sun, Weihua Jiang
{"title":"Global Dynamics of Predator–Prey Systems With Antipredation Strategy in Open Advective Environments","authors":"Zhongyuan Sun,&nbsp;Weihua Jiang","doi":"10.1111/sapm.70068","DOIUrl":"https://doi.org/10.1111/sapm.70068","url":null,"abstract":"<div>\u0000 \u0000 <p>We analyze reaction–diffusion–advection systems with Danckwerts boundary conditions describing the interactions of prey and specialist/generalist predators in open advective environments, in which the cost and benefit of antipredation responses are considered. The existence and stability of semitrivial steady states and positive ones are established via the monotonicity of principal eigenvalues with respect to parameters, priori estimates, and other techniques. Specially, for the specialist predator–prey system, the stability of positive steady states near the semitrivial steady state is proved by the bifurcation and spectral analysis, and we apply the global bifurcation theory to obtain a global bifurcation branch which connects to the positive steady state without fear effect. For the generalist predator–prey system, we establish the global stability of a unique positive steady state by constructing a spatial Lyapunov function. Compared with the case of no fear effect, the results show that antipredation strategy mainly influences the coexistence of both species, and the outcomes for specialist and generalist predators are significantly different. Under small advection rates, high antipredation level can prevent the invasion of specialist predators, while lead to the persistence of generalist predators alone.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144206339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information-TOC 问题Information-TOC
IF 2.6 2区 数学
Studies in Applied Mathematics Pub Date : 2025-06-04 DOI: 10.1111/sapm.70073
{"title":"Issue Information-TOC","authors":"","doi":"10.1111/sapm.70073","DOIUrl":"https://doi.org/10.1111/sapm.70073","url":null,"abstract":"","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144206551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信