{"title":"The Role of Medical Supply Shortages on an Age-Structured Epidemic Model","authors":"Miao Zhou, Junyuan Yang, Jiaxu Li, Guiquan Sun","doi":"10.1111/sapm.70019","DOIUrl":"https://doi.org/10.1111/sapm.70019","url":null,"abstract":"<div>\u0000 \u0000 <p>A shortage of medical resources can arise when a multitude of patients rapidly emerge during the initial phases of an emerging infectious disease, due to limited availability of healthcare resources. Chronological age plays a pivotal role in both foreseeing and preventing infection patterns. In this investigation, we present an Susceptible-Infected-Recovered (SIR) model that integrates an age-structured and a saturated treatment function, and demonstrate its well-posedness. Our analysis reveals intricate patterns in the system, characterized by a steady-state bifurcation involving a backward bifurcation and a stable bifurcation representing a Hopf bifurcation. Notably, numerical simulations demonstrate that when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo><</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$mathcal {R}_0<1$</annotation>\u0000 </semantics></math>, the system exemplifies a novel phenomenon wherein a disease-free equilibrium coexists harmoniously with an enduring Hopf bifurcation. We conduct a real application for model calibration and suggest that enhancing medical facilities and minimizing treatment delays may prove to be of paramount importance in curtailing the spread of the disease.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Multiparameter Singular Perturbation Analysis of the Robertson Model","authors":"Lukas Baumgartner, Peter Szmolyan","doi":"10.1111/sapm.70020","DOIUrl":"https://doi.org/10.1111/sapm.70020","url":null,"abstract":"<p>The Robertson model describing a chemical reaction involving three reactants is one of the classical examples of stiffness in ODEs. The stiffness is caused by the occurrence of three reaction rates <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 </mrow>\u0000 <annotation>${k}_{1},{k}_{2},$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 </mrow>\u0000 <annotation>${k}_{3},$</annotation>\u0000 </semantics></math> with largely differing orders of magnitude, acting as parameters. The model has been widely used as a numerical test problem. Surprisingly, no asymptotic analysis of this multiscale problem seems to exist. In this paper, we provide a full asymptotic analysis of the Robertson model under the assumption <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <mo>≪</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$k_1, k_3 ll k_2$</annotation>\u0000 </semantics></math>. We rewrite the equations as a two-parameter singular perturbation problem in the rescaled small parameters <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>ε</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>ε</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>:</mo>\u0000 <mo>=</mo>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>/</mo>\u0000 <msub>\u0000 <mi>k</mi>\u0000 ","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143248818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongxing Li, Daniel Acosta-Soba, Alessandro Columbu, Giuseppe Viglialoro
{"title":"Dissipative Gradient Nonlinearities Prevent \u0000 \u0000 δ\u0000 $delta$\u0000 -Formations in Local and Nonlocal Attraction–Repulsion Chemotaxis Models","authors":"Tongxing Li, Daniel Acosta-Soba, Alessandro Columbu, Giuseppe Viglialoro","doi":"10.1111/sapm.70018","DOIUrl":"https://doi.org/10.1111/sapm.70018","url":null,"abstract":"<p>We study a class of zero-flux attraction–repulsion chemotaxis models, characterized by nonlinearities laws for the diffusion of the cell density <span></span><math>\u0000 <semantics>\u0000 <mi>u</mi>\u0000 <annotation>$u$</annotation>\u0000 </semantics></math>, the chemosensitivities and the production rates of the chemoattractant <span></span><math>\u0000 <semantics>\u0000 <mi>v</mi>\u0000 <annotation>$v$</annotation>\u0000 </semantics></math> and the chemorepellent <span></span><math>\u0000 <semantics>\u0000 <mi>w</mi>\u0000 <annotation>$w$</annotation>\u0000 </semantics></math>. In addition, a source involving also the gradient of <span></span><math>\u0000 <semantics>\u0000 <mi>u</mi>\u0000 <annotation>$u$</annotation>\u0000 </semantics></math> is incorporated. Our overall study touches on different aspects: we address questions connected to local well-posedness, we derive sufficient conditions to ensure boundedness of solutions, and finally, we develop numerical simulations giving insights into the evolution of the system.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}