一种脑肿瘤放疗模型的分析

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Marina Chugunova, Hangjie Ji, Roman Taranets, Nataliya Vasylyeva
{"title":"一种脑肿瘤放疗模型的分析","authors":"Marina Chugunova,&nbsp;Hangjie Ji,&nbsp;Roman Taranets,&nbsp;Nataliya Vasylyeva","doi":"10.1111/sapm.70074","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, we focus on the analytical and numerical study of a mathematical model for brain tumors undergoing radiotherapy treatment. Under certain assumptions regarding the given data in the model, we prove the existence and uniqueness of a weak nonnegative (biologically relevant) solution. Then, we show how the additional regularity of initial data affects the regularity of these solutions. Besides, we analyze the optimal control of the advection coefficient which tunes the radiotherapy effect on the tumor cell population. We also complement our analytical results with relevant numerical simulations.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of a Radiotherapy Model for Brain Tumors\",\"authors\":\"Marina Chugunova,&nbsp;Hangjie Ji,&nbsp;Roman Taranets,&nbsp;Nataliya Vasylyeva\",\"doi\":\"10.1111/sapm.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this work, we focus on the analytical and numerical study of a mathematical model for brain tumors undergoing radiotherapy treatment. Under certain assumptions regarding the given data in the model, we prove the existence and uniqueness of a weak nonnegative (biologically relevant) solution. Then, we show how the additional regularity of initial data affects the regularity of these solutions. Besides, we analyze the optimal control of the advection coefficient which tunes the radiotherapy effect on the tumor cell population. We also complement our analytical results with relevant numerical simulations.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70074\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70074","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们着重于脑肿瘤放射治疗的数学模型的分析和数值研究。在给定模型数据的某些假设下,我们证明了一个弱非负(生物相关)解的存在唯一性。然后,我们展示了初始数据的附加规律性如何影响这些解的规律性。此外,我们还分析了平流系数的最优控制,平流系数可以调节放疗对肿瘤细胞群的影响。我们还用相关的数值模拟来补充我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of a Radiotherapy Model for Brain Tumors

In this work, we focus on the analytical and numerical study of a mathematical model for brain tumors undergoing radiotherapy treatment. Under certain assumptions regarding the given data in the model, we prove the existence and uniqueness of a weak nonnegative (biologically relevant) solution. Then, we show how the additional regularity of initial data affects the regularity of these solutions. Besides, we analyze the optimal control of the advection coefficient which tunes the radiotherapy effect on the tumor cell population. We also complement our analytical results with relevant numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信