On Ocean Currents with Constant Vorticity: Explicit Solutions and an Application to the ACC

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Anna Geyer, Ronald Quirchmayr
{"title":"On Ocean Currents with Constant Vorticity: Explicit Solutions and an Application to the ACC","authors":"Anna Geyer,&nbsp;Ronald Quirchmayr","doi":"10.1111/sapm.70081","DOIUrl":null,"url":null,"abstract":"<p>We study the three-dimensional, divergence-free, incompressible Euler equations in the <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>-plane approximation for off-equatorial oceanic flows of constant vorticity, where the fluid domain is bounded by a free surface and a flat bed. The major difference, compared to related earlier works, is that we refrain from any global restrictions on solutions with respect to the latitudinal coordinate <span></span><math>\n <semantics>\n <mi>y</mi>\n <annotation>$y$</annotation>\n </semantics></math>, which we justify by the <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>-plane approximation's locality. The resulting flows are necessarily steady (despite the time dependence of the governing equations), zonal, independent of the zonal coordinate <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>, and fully explicit; the corresponding free surface exhibits a nontrivial parabolic structure in <span></span><math>\n <semantics>\n <mi>y</mi>\n <annotation>$y$</annotation>\n </semantics></math>. We also provide an application to the Antarctic Circumpolar Current (ACC) for which we compare the sea surface height predicted by our constant vorticity model with satellite altimetry measurements available in the literature.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70081","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the three-dimensional, divergence-free, incompressible Euler equations in the f $f$ -plane approximation for off-equatorial oceanic flows of constant vorticity, where the fluid domain is bounded by a free surface and a flat bed. The major difference, compared to related earlier works, is that we refrain from any global restrictions on solutions with respect to the latitudinal coordinate y $y$ , which we justify by the f $f$ -plane approximation's locality. The resulting flows are necessarily steady (despite the time dependence of the governing equations), zonal, independent of the zonal coordinate x $x$ , and fully explicit; the corresponding free surface exhibits a nontrivial parabolic structure in y $y$ . We also provide an application to the Antarctic Circumpolar Current (ACC) for which we compare the sea surface height predicted by our constant vorticity model with satellite altimetry measurements available in the literature.

Abstract Image

恒涡度海流:显式解及其在ACC中的应用
我们研究了在f$ f$ -平面近似下离赤道等涡度海洋流动的三维、无散度、不可压缩欧拉方程,其中流体域由自由表面和平坦床所包围。与相关的早期工作相比,主要的区别是,我们避免了关于纬度坐标y$ y$的解的任何全局限制,我们通过f$ f$ -平面近似的局部性来证明这一点。所产生的流动必须是稳定的(尽管控制方程的时间依赖性),地带性的,独立于地带性坐标x$ x$,并且完全明确;相应的自由曲面在y$ y$中呈现非平凡抛物线结构。我们还提供了一个应用于南极环极流(ACC)的应用,我们将我们的等涡度模型预测的海面高度与文献中可用的卫星测高结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信