Dispersive Revival Phenomena for Two-Dimensional Dispersive Evolution Equations

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Zihan Yin, Jing Kang, Changzheng Qu
{"title":"Dispersive Revival Phenomena for Two-Dimensional Dispersive Evolution Equations","authors":"Zihan Yin,&nbsp;Jing Kang,&nbsp;Changzheng Qu","doi":"10.1111/sapm.70079","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we investigate dispersive revival phenomena of two-dimensional linear spatially periodic dispersive evolution equations, defined on a rectangle with periodic boundary conditions and discontinuous initial profiles. We begin by studying the periodic initial-boundary value problem for general two-dimensional dispersive evolution equations. We prove that, when posed on a periodic rational torus, two-dimensional linear dispersive equations with homogeneous power integral binary polynomial dispersion relations exhibit the standard dispersive revival effect at rational times. This means that the resulting solution can be expressed as a finite linear combination of translates of the initial data. Next, we explore a novel revival phenomenon in two-dimensional equations with nonpolynomial dispersion relations, in the concrete case of the periodic initial-boundary value problem for the linear Kadomtsev–Petviashvili equation on a square with step function initial data. In this scenario, the revival phenomenon exhibits a novel characteristic that there are radically different qualitative behaviors in the <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>- and <span></span><math>\n <semantics>\n <mi>y</mi>\n <annotation>$y$</annotation>\n </semantics></math>-directions. We provide an analytic description of this dichotomous revival phenomenon and present illustrative numerical simulations.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70079","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate dispersive revival phenomena of two-dimensional linear spatially periodic dispersive evolution equations, defined on a rectangle with periodic boundary conditions and discontinuous initial profiles. We begin by studying the periodic initial-boundary value problem for general two-dimensional dispersive evolution equations. We prove that, when posed on a periodic rational torus, two-dimensional linear dispersive equations with homogeneous power integral binary polynomial dispersion relations exhibit the standard dispersive revival effect at rational times. This means that the resulting solution can be expressed as a finite linear combination of translates of the initial data. Next, we explore a novel revival phenomenon in two-dimensional equations with nonpolynomial dispersion relations, in the concrete case of the periodic initial-boundary value problem for the linear Kadomtsev–Petviashvili equation on a square with step function initial data. In this scenario, the revival phenomenon exhibits a novel characteristic that there are radically different qualitative behaviors in the x $x$ - and y $y$ -directions. We provide an analytic description of this dichotomous revival phenomenon and present illustrative numerical simulations.

二维色散演化方程的色散恢复现象
本文研究了定义在具有周期边界条件和不连续初始轮廓的矩形上的二维线性空间周期色散演化方程的色散恢复现象。首先研究一般二维色散演化方程的周期初边值问题。证明了具有齐次幂积分二元多项式色散关系的二维线性色散方程在周期有理环面上,在有理时刻表现出标准色散恢复效应。这意味着结果解可以表示为初始数据平移的有限线性组合。接下来,我们探讨了具有非多项式频散关系的二维方程中的一种新的恢复现象,具体的例子是具有阶跃函数初始数据的方形上的线性Kadomtsev-Petviashvili方程的周期初边值问题。在这种情况下,复兴现象表现出一个新的特征,即在x$ x$ -和y$ y$ -方向上存在根本不同的定性行为。我们提供了这种二分复兴现象的解析描述,并给出了说明性的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信