Existence and Orbital Stability of Standing-Wave Solutions of the Nonlinear Logarithmic Schrödinger Equation On a Tadpole Graph

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Jaime Angulo Pava, Andrés Gerardo Pérez Yépez
{"title":"Existence and Orbital Stability of Standing-Wave Solutions of the Nonlinear Logarithmic Schrödinger Equation On a Tadpole Graph","authors":"Jaime Angulo Pava,&nbsp;Andrés Gerardo Pérez Yépez","doi":"10.1111/sapm.70085","DOIUrl":null,"url":null,"abstract":"<p>This work aims to study some dynamical aspects of the nonlinear logarithmic Schrödinger equation (NLS-log) on a tadpole graph, namely, a graph consisting of a circle with a half-line attached at a single vertex. By considering Neumann–Kirchhoff boundary conditions at the junction, we show the existence and the orbital stability of standing wave solutions with a profile determined by a positive single-lobe state. Via a splitting-eigenvalue method, we identify the Morse index and the nullity index of a specific linearized operator around a positive single-lobe state. To our knowledge, the results contained in this paper are the first to study the (NLS-log) on tadpole graphs. In particular, our approach has the prospect of being extended to study stability properties of other bound states for the (NLS-log) on a tadpole graph or other non-compact metric graph such as a looping-edge graphs.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70085","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to study some dynamical aspects of the nonlinear logarithmic Schrödinger equation (NLS-log) on a tadpole graph, namely, a graph consisting of a circle with a half-line attached at a single vertex. By considering Neumann–Kirchhoff boundary conditions at the junction, we show the existence and the orbital stability of standing wave solutions with a profile determined by a positive single-lobe state. Via a splitting-eigenvalue method, we identify the Morse index and the nullity index of a specific linearized operator around a positive single-lobe state. To our knowledge, the results contained in this paper are the first to study the (NLS-log) on tadpole graphs. In particular, our approach has the prospect of being extended to study stability properties of other bound states for the (NLS-log) on a tadpole graph or other non-compact metric graph such as a looping-edge graphs.

Abstract Image

蝌蚪图上非线性对数Schrödinger方程驻波解的存在性和轨道稳定性
这项工作的目的是研究蝌蚪图上非线性对数Schrödinger方程(NLS-log)的一些动力学方面,即一个由一个圆组成的图,在一个顶点上附加了一条半线。通过考虑交界处的Neumann-Kirchhoff边界条件,我们证明了由正单瓣态决定剖面的驻波解的存在性和轨道稳定性。通过分裂特征值方法,我们确定了特定线性化算子在正单瓣态周围的摩尔斯指数和零指数。据我们所知,本文中包含的结果是第一个研究蝌蚪图的(NLS-log)。特别是,我们的方法有可能被推广到研究蝌蚪图或其他非紧化度量图(如环边图)上(NLS-log)的其他束缚态的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信