具有能量交换的不可压缩非齐次动力学流体模型经典解的整体存在性和大时间行为

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Fucai Li, Jinkai Ni, Man Wu
{"title":"具有能量交换的不可压缩非齐次动力学流体模型经典解的整体存在性和大时间行为","authors":"Fucai Li,&nbsp;Jinkai Ni,&nbsp;Man Wu","doi":"10.1111/sapm.70077","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we concentrate on a kinetic-fluid model with energy exchanges, which contains a Vlasov–Fokker–Planck equation for the particles and an incompressible inhomogeneous Navier–Stokes system with heat conductivity for the fluid. The two parts in the model twist together via the momentum and energy exchanges revealing the interaction between the fluid and the particles. For the small initial data near the given equilibrium state, we obtain the global existence, uniqueness, and optimal decay rates of classical solutions in the three-dimensional whole space. Furthermore, we obtain the optimal decay rates of the gradients in <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> of solutions. For the periodic domain case, the decay rates are exponential. The proofs of our results are mainly based on the new macro–micro decomposition and modified energy-spectrum method. We also introduce some new ideas and develop a new energy method to enclose the a priori estimates. More precisely, we first exploit the new macro–micro decomposition and the dissipation rate on the gradient of the pressure <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> instead of the density <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <annotation>$H^2$</annotation>\n </semantics></math> norm to enclose the estimates <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mi>f</mi>\n <mo>∥</mo>\n </mrow>\n <msubsup>\n <mi>H</mi>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>ξ</mi>\n </mrow>\n <mn>3</mn>\n </msubsup>\n </msub>\n <mo>+</mo>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mi>u</mi>\n <mo>∥</mo>\n </mrow>\n <msubsup>\n <mi>H</mi>\n <mi>x</mi>\n <mn>3</mn>\n </msubsup>\n </msub>\n </mrow>\n <annotation>$\\Vert f\\Vert _{H^3_{x,\\xi }} + \\Vert u\\Vert _{H^3_x}$</annotation>\n </semantics></math>. Then, by applying Gronwall's inequality and establishing the <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>5</mn>\n <mo>/</mo>\n <mn>4</mn>\n </mrow>\n </msup>\n <annotation>$(1+t)^{- {5}/{4}}$</annotation>\n </semantics></math> decay rate in the whole space and the exponential decay rate on the periodic domain of <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>∇</mo>\n <mi>u</mi>\n <mo>∥</mo>\n </mrow>\n <msubsup>\n <mi>H</mi>\n <mi>x</mi>\n <mn>2</mn>\n </msubsup>\n </msub>\n <annotation>$\\Vert \\nabla u \\Vert _{H^2_x}$</annotation>\n </semantics></math>, we enclose the estimate <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mi>ρ</mi>\n <mo>∥</mo>\n </mrow>\n <msubsup>\n <mi>H</mi>\n <mi>x</mi>\n <mn>3</mn>\n </msubsup>\n </msub>\n <annotation>$\\Vert \\rho \\Vert _{H^3_x}$</annotation>\n </semantics></math> in the a priori estimates. Finally, based on the modified energy-spectrum method, and the fact that the transport equation with divergence free velocity field is <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^1$</annotation>\n </semantics></math> conserved, we obtain the optimal decay rates of the solutions <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mi>u</mi>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(f,u,\\theta)$</annotation>\n </semantics></math> and their gradients.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Existence and Large Time Behavior of Classical Solutions to the Incompressible Inhomogeneous Kinetic-Fluid Model With Energy Exchanges\",\"authors\":\"Fucai Li,&nbsp;Jinkai Ni,&nbsp;Man Wu\",\"doi\":\"10.1111/sapm.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we concentrate on a kinetic-fluid model with energy exchanges, which contains a Vlasov–Fokker–Planck equation for the particles and an incompressible inhomogeneous Navier–Stokes system with heat conductivity for the fluid. The two parts in the model twist together via the momentum and energy exchanges revealing the interaction between the fluid and the particles. For the small initial data near the given equilibrium state, we obtain the global existence, uniqueness, and optimal decay rates of classical solutions in the three-dimensional whole space. Furthermore, we obtain the optimal decay rates of the gradients in <span></span><math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math> of solutions. For the periodic domain case, the decay rates are exponential. The proofs of our results are mainly based on the new macro–micro decomposition and modified energy-spectrum method. We also introduce some new ideas and develop a new energy method to enclose the a priori estimates. More precisely, we first exploit the new macro–micro decomposition and the dissipation rate on the gradient of the pressure <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> instead of the density <span></span><math>\\n <semantics>\\n <mi>ρ</mi>\\n <annotation>$\\\\rho$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$H^2$</annotation>\\n </semantics></math> norm to enclose the estimates <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mi>f</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>ξ</mi>\\n </mrow>\\n <mn>3</mn>\\n </msubsup>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mi>u</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>x</mi>\\n <mn>3</mn>\\n </msubsup>\\n </msub>\\n </mrow>\\n <annotation>$\\\\Vert f\\\\Vert _{H^3_{x,\\\\xi }} + \\\\Vert u\\\\Vert _{H^3_x}$</annotation>\\n </semantics></math>. Then, by applying Gronwall's inequality and establishing the <span></span><math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>5</mn>\\n <mo>/</mo>\\n <mn>4</mn>\\n </mrow>\\n </msup>\\n <annotation>$(1+t)^{- {5}/{4}}$</annotation>\\n </semantics></math> decay rate in the whole space and the exponential decay rate on the periodic domain of <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>∇</mo>\\n <mi>u</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msubsup>\\n </msub>\\n <annotation>$\\\\Vert \\\\nabla u \\\\Vert _{H^2_x}$</annotation>\\n </semantics></math>, we enclose the estimate <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mi>ρ</mi>\\n <mo>∥</mo>\\n </mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>x</mi>\\n <mn>3</mn>\\n </msubsup>\\n </msub>\\n <annotation>$\\\\Vert \\\\rho \\\\Vert _{H^3_x}$</annotation>\\n </semantics></math> in the a priori estimates. Finally, based on the modified energy-spectrum method, and the fact that the transport equation with divergence free velocity field is <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$L^1$</annotation>\\n </semantics></math> conserved, we obtain the optimal decay rates of the solutions <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mi>u</mi>\\n <mo>,</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(f,u,\\\\theta)$</annotation>\\n </semantics></math> and their gradients.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70077\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70077","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们集中讨论了一个具有能量交换的动力学流体模型,该模型包含粒子的Vlasov-Fokker-Planck方程和流体的不可压缩非齐次Navier-Stokes系统。模型中的两个部分通过动量和能量交换交织在一起,揭示了流体和粒子之间的相互作用。对于接近给定平衡态的小初始数据,我们得到了三维整体空间中经典解的整体存在性、唯一性和最优衰减率。进一步,我们得到了解在x $x$上梯度的最优衰减率。对于周期域的情况,衰减率是指数的。我们的结果的证明主要基于新的宏微观分解和改进的能谱方法。我们还引入了一些新的思想,并开发了一种新的能量方法来封闭先验估计。更准确地说,我们首先利用新的宏微观分解和压力p $p$的梯度耗散率代替h2 $H^2$范数中的密度ρ $\rho$来表示估计∥f∥hx,ξ 3 +∥u∥H x3 $\Vert f\Vert _{H^3_{x,\xi }} + \Vert u\Vert _{H^3_x}$。然后,应用Gronwall不等式,建立了(1 + t)−5 / 4 $(1+t)^{- {5}/{4}}$在整个空间的衰减率和在周期域的指数衰减率∥u∥H x2 $\Vert \nabla u \Vert _{H^2_x}$,我们将估计∥ρ∥H x 3 $\Vert \rho \Vert _{H^3_x}$包含在先验估计中。最后,基于改进的能谱法,在散度自由速度场输运方程为1 $L^1$守恒的情况下,得到了解(f, u,θ) $(f,u,\theta)$及其梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence and Large Time Behavior of Classical Solutions to the Incompressible Inhomogeneous Kinetic-Fluid Model With Energy Exchanges

In this paper, we concentrate on a kinetic-fluid model with energy exchanges, which contains a Vlasov–Fokker–Planck equation for the particles and an incompressible inhomogeneous Navier–Stokes system with heat conductivity for the fluid. The two parts in the model twist together via the momentum and energy exchanges revealing the interaction between the fluid and the particles. For the small initial data near the given equilibrium state, we obtain the global existence, uniqueness, and optimal decay rates of classical solutions in the three-dimensional whole space. Furthermore, we obtain the optimal decay rates of the gradients in x $x$ of solutions. For the periodic domain case, the decay rates are exponential. The proofs of our results are mainly based on the new macro–micro decomposition and modified energy-spectrum method. We also introduce some new ideas and develop a new energy method to enclose the a priori estimates. More precisely, we first exploit the new macro–micro decomposition and the dissipation rate on the gradient of the pressure p $p$ instead of the density ρ $\rho$ in H 2 $H^2$ norm to enclose the estimates f H x , ξ 3 + u H x 3 $\Vert f\Vert _{H^3_{x,\xi }} + \Vert u\Vert _{H^3_x}$ . Then, by applying Gronwall's inequality and establishing the ( 1 + t ) 5 / 4 $(1+t)^{- {5}/{4}}$ decay rate in the whole space and the exponential decay rate on the periodic domain of u H x 2 $\Vert \nabla u \Vert _{H^2_x}$ , we enclose the estimate ρ H x 3 $\Vert \rho \Vert _{H^3_x}$ in the a priori estimates. Finally, based on the modified energy-spectrum method, and the fact that the transport equation with divergence free velocity field is L 1 $L^1$ conserved, we obtain the optimal decay rates of the solutions ( f , u , θ ) $(f,u,\theta)$ and their gradients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信