St Petersburg Mathematical Journal最新文献

筛选
英文 中文
The absence of eigenvalues for certain operators with partially periodic coefficients 某些部分周期系数算子的特征值不存在
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-08-24 DOI: 10.1090/spmj/1730
N. Filonov
{"title":"The absence of eigenvalues for certain operators with partially periodic coefficients","authors":"N. Filonov","doi":"10.1090/spmj/1730","DOIUrl":"https://doi.org/10.1090/spmj/1730","url":null,"abstract":"<p>The absence of eigenvalues is proved for the Schrödinger operator <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"negative normal upper Delta plus upper V left-parenthesis x comma y right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\u0000 <mml:mo>+</mml:mo>\u0000 <mml:mi>V</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>y</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">-Delta + V(x,y)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> in the Euclidean space whose potential is periodic in some variables and decays in the remaining variables faster than power <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\u0000 <mml:semantics>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. A similar result for the Maxwell operator is established.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48564417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Limit behavior of Weyl coefficients Weyl系数的极限行为
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-08-24 DOI: 10.1090/spmj/1729
R. Pruckner, H. Woracek
{"title":"Limit behavior of Weyl coefficients","authors":"R. Pruckner, H. Woracek","doi":"10.1090/spmj/1729","DOIUrl":"https://doi.org/10.1090/spmj/1729","url":null,"abstract":"<p>The sets of radial or nontangential limit points towards <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i normal infinity\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>i</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">iinfty</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of a Nevanlinna function <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\u0000 <mml:semantics>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> are studied. Given a nonempty, closed, and connected subset <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper L\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">L</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{mathcal {L}}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C Subscript plus Baseline overbar\">\u0000 <mml:semantics>\u0000 <mml:mover>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:mo>+</mml:mo>\u0000 </mml:msub>\u0000 <mml:mo accent=\"false\">¯<!-- ¯ --></mml:mo>\u0000 </mml:mover>\u0000 <mml:annotation encoding=\"application/x-tex\">overline {{mathbb {C}}_+}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, a Hamiltonian <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\u0000 <mml:semantics>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is constructed explicitly such that the radial and outer angular cluster sets towards <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i normal infinity\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>i</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">iinfty</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of the Weyl coefficient <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q Subscript upper H\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>q</mml:mi>\u0000 <mml:mi>H</mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"application/x-tex\">q_H</mml:a","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45911644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On a mathematical model of a repressilator 关于阻遏物的数学模型
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-08-24 DOI: 10.1090/spmj/1727
S. Glyzin, A. Kolesov, N. Rozov
{"title":"On a mathematical model of a repressilator","authors":"S. Glyzin, A. Kolesov, N. Rozov","doi":"10.1090/spmj/1727","DOIUrl":"https://doi.org/10.1090/spmj/1727","url":null,"abstract":"A mathematical model of the simplest three-link oscillatory gene network, the so-called repressilator, is considered. This model is a nonlinear singularly perturbed system of three ordinary differential equations. The existence and stability of a relaxation periodic solution invariant with respect to cyclic permutations of coordinates are investigated for this system.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47451963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Banach limits: extreme properties, invariance and the Fubini theorem 巴拿赫极限:极值性质、不变性和富比尼定理
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-06-27 DOI: 10.1090/spmj/1717
N. Avdeev, E. Semenov, A. Usachev
{"title":"Banach limits: extreme properties, invariance and the Fubini theorem","authors":"N. Avdeev, E. Semenov, A. Usachev","doi":"10.1090/spmj/1717","DOIUrl":"https://doi.org/10.1090/spmj/1717","url":null,"abstract":"A Banach limit on the space of all bounded real sequences is a positive normalized linear functional that is invariant with respect to the shift. The paper studies such properties of Banach limits as multiplicativity and the validity of Fubini’s theorem. A subset of Banach limits invariant with respect to dilation operators is also treated.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41693367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The set of zeros of the Riemann zeta function as the point spectrum of an operator 作为算子的点谱的黎曼函数的零的集合
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-06-27 DOI: 10.1090/spmj/1720
V. Kapustin
{"title":"The set of zeros of the Riemann zeta function as the point spectrum of an operator","authors":"V. Kapustin","doi":"10.1090/spmj/1720","DOIUrl":"https://doi.org/10.1090/spmj/1720","url":null,"abstract":"<p>A possible way of proving the Riemann hypothesis consists of constructing a selfadjoint operartor whose spectrum coincides with the set <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace z colon StartAbsoluteValue upper I m z EndAbsoluteValue greater-than one half comma zeta left-parenthesis one half minus i z right-parenthesis equals 0 right-brace\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mspace width=\"thinmathspace\" />\u0000 <mml:mo>:</mml:mo>\u0000 <mml:mspace width=\"thinmathspace\" />\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>Im</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo stretchy=\"false\">|</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mfrac>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mfrac>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mtext> </mml:mtext>\u0000 <mml:mi>ζ<!-- ζ --></mml:mi>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mfrac>\u0000 <mml:mn>1</mml:mn>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mfrac>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mi>i</mml:mi>\u0000 <mml:mi>z</mml:mi>\u0000 <mml:mstyle scriptlevel=\"0\">\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\u0000 </mml:mrow>\u0000 </mml:mstyle>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">{z,: , |operatorname {Im}z|>frac 12, zeta big (frac {1}{2}-izbig )=0}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. In the paper we construct a rank-one perturbation of a selfadjoint operator related to a certain canonical system for which a similar property is fulfilled.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48485301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted string equation where the weight is a noncompact multiplier: continuous spectrum and eigenvalues 权重为非紧乘数的加权字符串方程:连续谱和特征值
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-06-27 DOI: 10.1090/spmj/1723
E. B. Sharov, I. Sheipak
{"title":"Weighted string equation where the weight is a noncompact multiplier: continuous spectrum and eigenvalues","authors":"E. B. Sharov, I. Sheipak","doi":"10.1090/spmj/1723","DOIUrl":"https://doi.org/10.1090/spmj/1723","url":null,"abstract":"The oscillation equation for a singular string with discrete weight generated by a self-similar \u0000\u0000 \u0000 n\u0000 n\u0000 \u0000\u0000-link multiplier in the Sobolev space with a negative smoothness index is considered. It is shown that in the case of a noncompact multiplier, the string problem is equivalent to the spectral problem for an \u0000\u0000 \u0000 \u0000 (\u0000 n\u0000 −\u0000 1\u0000 )\u0000 \u0000 (n-1)\u0000 \u0000\u0000-periodic Jacobi matrix. In the case of \u0000\u0000 \u0000 \u0000 n\u0000 =\u0000 3\u0000 \u0000 n=3\u0000 \u0000\u0000, a complete description of the spectrum of the problem is given, and a criterion for emergence of an eigenvalue in a gap of the continuous spectrum is obtained.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47808451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projective free algebras of bounded holomorphic functions on infinitely connected domains 无限连通域上有界全纯函数的射影自由代数
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-06-27 DOI: 10.1090/spmj/1718
A. Brudnyi
{"title":"Projective free algebras of bounded holomorphic functions on infinitely connected domains","authors":"A. Brudnyi","doi":"10.1090/spmj/1718","DOIUrl":"https://doi.org/10.1090/spmj/1718","url":null,"abstract":"<p>The algebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^infty (D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of bounded holomorphic functions on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D subset-of double-struck upper C\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo>⊂<!-- ⊂ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">Dsubset mathbb {C}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is projective free for a wide class of infinitely connected domains. In particular, for such <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\u0000 <mml:semantics>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> every rectangular left-invertible matrix with entries in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^infty (D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msup>\u0000 <mml:mi>H</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>D</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">H^infty (D)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> asserting that its covering dimension is <inl","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46137749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Preservation of classes of entire functions defined in terms of growth restrictions along the real axis under perturbations of their zero sets 在零集扰动下,用实轴生长限制定义的整函数类的保存
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-06-27 DOI: 10.1090/spmj/1716
N. Abuzyarova
{"title":"Preservation of classes of entire functions defined in terms of growth restrictions along the real axis under perturbations of their zero sets","authors":"N. Abuzyarova","doi":"10.1090/spmj/1716","DOIUrl":"https://doi.org/10.1090/spmj/1716","url":null,"abstract":"Four special subsets of the Schwartz algebra are defined (this algebra consists of all entire functions of exponential type and of polynomial growth on the real axis). Perturbations of the zero sets for functions belonging to each of these subsets are studied. It is shown that the boundedness of the real part of the perturbing sequence is a sufficient and, generally speaking, unimprovable condition for preservation the subset from which the function in question is taken. An application of these results to spectral synthesis problems for differentiation-invariant subspaces of the Schwartz class on an interval of the real line is considered.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44768528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Positivity principle for measures on uniformly convex Banach spaces 一致凸Banach空间测度的正性原理
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-06-27 DOI: 10.1090/spmj/1722
E. Riss
{"title":"Positivity principle for measures on uniformly convex Banach spaces","authors":"E. Riss","doi":"10.1090/spmj/1722","DOIUrl":"https://doi.org/10.1090/spmj/1722","url":null,"abstract":"<p>A Banach space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is said to satisfy the <italic>positivity principle</italic> for small balls if for every finite Borel measures <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\">\u0000 <mml:semantics>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">mu</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\">\u0000 <mml:semantics>\u0000 <mml:mi>ν<!-- ν --></mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">nu</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, the inequalities <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu left-parenthesis upper B right-parenthesis less-than-or-equal-to nu left-parenthesis upper B right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>ν<!-- ν --></mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>B</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mu (B) leq nu (B)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> for all balls B of radius less than 1 imply that <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu less-than-or-equal-to nu\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mo>≤<!-- ≤ --></mml:mo>\u0000 <mml:mi>ν<!-- ν --></mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mu leq nu</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. It is shown that no uniformly convex infinite-dimensional separable Banach space <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\u0000 <mml:semantics>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> obeys the positivity principle for small balls.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43622700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On interpolation and 𝐾-monotonicity for discrete local Morrey spaces 离散局部Morrey空间的插值和𝐾-monotonicity
IF 0.8 4区 数学
St Petersburg Mathematical Journal Pub Date : 2022-05-05 DOI: 10.1090/spmj/1707
E. Berezhnoi
{"title":"On interpolation and 𝐾-monotonicity for discrete local Morrey spaces","authors":"E. Berezhnoi","doi":"10.1090/spmj/1707","DOIUrl":"https://doi.org/10.1090/spmj/1707","url":null,"abstract":"A formula is given that makes it possible to reduce the calculation of an interpolation functor on a pair of local Morrey spaces to the calculation of this functor on pairs of vector function spaces constructed from the ideal spaces involved in the definition of the Morrey spaces in question. It is shown that a pair of local Morrey spaces is \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-monotone if and only if the pair of vector function spaces mentioned above is \u0000\u0000 \u0000 K\u0000 K\u0000 \u0000\u0000-monotone. This reduction makes it possible to obtain new interpolation theorems even for classical local spaces.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45203162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信