无限连通域上有界全纯函数的射影自由代数

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Brudnyi
{"title":"无限连通域上有界全纯函数的射影自由代数","authors":"A. Brudnyi","doi":"10.1090/spmj/1718","DOIUrl":null,"url":null,"abstract":"<p>The algebra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^\\infty (D)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of bounded holomorphic functions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D subset-of double-struck upper C\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>D</mml:mi>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">D\\subset \\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is projective free for a wide class of infinitely connected domains. In particular, for such <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D\">\n <mml:semantics>\n <mml:mi>D</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">D</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> every rectangular left-invertible matrix with entries in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^\\infty (D)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>D</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^\\infty (D)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> asserting that its covering dimension is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and the second Čech cohomology group is trivial.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Projective free algebras of bounded holomorphic functions on infinitely connected domains\",\"authors\":\"A. Brudnyi\",\"doi\":\"10.1090/spmj/1718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The algebra <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>D</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^\\\\infty (D)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of bounded holomorphic functions on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D subset-of double-struck upper C\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>D</mml:mi>\\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">D\\\\subset \\\\mathbb {C}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is projective free for a wide class of infinitely connected domains. In particular, for such <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper D\\\">\\n <mml:semantics>\\n <mml:mi>D</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">D</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> every rectangular left-invertible matrix with entries in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>D</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^\\\\infty (D)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript normal infinity Baseline left-parenthesis upper D right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>D</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^\\\\infty (D)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> asserting that its covering dimension is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and the second Čech cohomology group is trivial.</p>\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1718\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

D⊂C D\subet \mathbb{C}上有界全纯函数的代数H∞(D)H^\infty(D)对于一大类无限连通域是无投影的。特别地,对于这样的D D,每一个在H∞(D)H^\infty(D)中有项的矩形左可逆矩阵都可以在这类矩阵中推广为可逆平方矩阵。这源于关于H∞(D)H^\infty(D)的最大理想空间结构的一个新结果,该结果断言其覆盖维数为2,并且第二Čech上同调群是平凡的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective free algebras of bounded holomorphic functions on infinitely connected domains

The algebra H ( D ) H^\infty (D) of bounded holomorphic functions on D C D\subset \mathbb {C} is projective free for a wide class of infinitely connected domains. In particular, for such  D D every rectangular left-invertible matrix with entries in H ( D ) H^\infty (D) can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of H ( D ) H^\infty (D) asserting that its covering dimension is 2 2 and the second Čech cohomology group is trivial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信