{"title":"The set of zeros of the Riemann zeta function as the point spectrum of an operator","authors":"V. Kapustin","doi":"10.1090/spmj/1720","DOIUrl":null,"url":null,"abstract":"<p>A possible way of proving the Riemann hypothesis consists of constructing a selfadjoint operartor whose spectrum coincides with the set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace z colon StartAbsoluteValue upper I m z EndAbsoluteValue greater-than one half comma zeta left-parenthesis one half minus i z right-parenthesis equals 0 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mo>:</mml:mo>\n <mml:mspace width=\"thinmathspace\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>Im</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>z</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo>></mml:mo>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mtext> </mml:mtext>\n <mml:mi>ζ<!-- ζ --></mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mfrac>\n <mml:mn>1</mml:mn>\n <mml:mn>2</mml:mn>\n </mml:mfrac>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>i</mml:mi>\n <mml:mi>z</mml:mi>\n <mml:mstyle scriptlevel=\"0\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mml:mo>\n </mml:mrow>\n </mml:mstyle>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\{z\\,: \\, |\\operatorname {Im}z|>\\frac 12, \\ \\zeta \\big (\\frac {1}{2}-iz\\big )=0\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the paper we construct a rank-one perturbation of a selfadjoint operator related to a certain canonical system for which a similar property is fulfilled.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1720","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A possible way of proving the Riemann hypothesis consists of constructing a selfadjoint operartor whose spectrum coincides with the set {z:|Imz|>12,ζ(12−iz)=0}\{z\,: \, |\operatorname {Im}z|>\frac 12, \ \zeta \big (\frac {1}{2}-iz\big )=0\}. In the paper we construct a rank-one perturbation of a selfadjoint operator related to a certain canonical system for which a similar property is fulfilled.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.