巴拿赫极限:极值性质、不变性和富比尼定理

IF 0.7 4区 数学 Q2 MATHEMATICS
N. Avdeev, E. Semenov, A. Usachev
{"title":"巴拿赫极限:极值性质、不变性和富比尼定理","authors":"N. Avdeev, E. Semenov, A. Usachev","doi":"10.1090/spmj/1717","DOIUrl":null,"url":null,"abstract":"A Banach limit on the space of all bounded real sequences is a positive normalized linear functional that is invariant with respect to the shift. The paper studies such properties of Banach limits as multiplicativity and the validity of Fubini’s theorem. A subset of Banach limits invariant with respect to dilation operators is also treated.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Banach limits: extreme properties, invariance and the Fubini theorem\",\"authors\":\"N. Avdeev, E. Semenov, A. Usachev\",\"doi\":\"10.1090/spmj/1717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Banach limit on the space of all bounded real sequences is a positive normalized linear functional that is invariant with respect to the shift. The paper studies such properties of Banach limits as multiplicativity and the validity of Fubini’s theorem. A subset of Banach limits invariant with respect to dilation operators is also treated.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1717\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1717","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

所有有界实序列空间上的Banach极限是一个正的归一化线性泛函,它对位移是不变的。本文研究了Banach极限的乘法性和富比尼定理的有效性。还讨论了关于扩张算子的Banach极限不变量的一个子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banach limits: extreme properties, invariance and the Fubini theorem
A Banach limit on the space of all bounded real sequences is a positive normalized linear functional that is invariant with respect to the shift. The paper studies such properties of Banach limits as multiplicativity and the validity of Fubini’s theorem. A subset of Banach limits invariant with respect to dilation operators is also treated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信