Positivity principle for measures on uniformly convex Banach spaces

IF 0.7 4区 数学 Q2 MATHEMATICS
E. Riss
{"title":"Positivity principle for measures on uniformly convex Banach spaces","authors":"E. Riss","doi":"10.1090/spmj/1722","DOIUrl":null,"url":null,"abstract":"<p>A Banach space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is said to satisfy the <italic>positivity principle</italic> for small balls if for every finite Borel measures <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\">\n <mml:semantics>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\">\n <mml:semantics>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, the inequalities <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu left-parenthesis upper B right-parenthesis less-than-or-equal-to nu left-parenthesis upper B right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>B</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>B</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu (B) \\leq \\nu (B)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for all balls B of radius less than 1 imply that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu less-than-or-equal-to nu\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu \\leq \\nu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It is shown that no uniformly convex infinite-dimensional separable Banach space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> obeys the positivity principle for small balls.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1722","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Banach space X X is said to satisfy the positivity principle for small balls if for every finite Borel measures μ \mu and ν \nu on X X , the inequalities μ ( B ) ν ( B ) \mu (B) \leq \nu (B) for all balls B of radius less than 1 imply that μ ν \mu \leq \nu . It is shown that no uniformly convex infinite-dimensional separable Banach space X X obeys the positivity principle for small balls.

一致凸Banach空间测度的正性原理
Banach空间X X被认为满足小球的正性原理,如果对于X X上的每个有限Borel测度μ,对于半径小于1的所有球B,不等式μ。证明了没有一致凸的无穷维可分Banach空间X X服从小球的正性原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信