离散局部Morrey空间的插值和𝐾-monotonicity

IF 0.7 4区 数学 Q2 MATHEMATICS
E. Berezhnoi
{"title":"离散局部Morrey空间的插值和𝐾-monotonicity","authors":"E. Berezhnoi","doi":"10.1090/spmj/1707","DOIUrl":null,"url":null,"abstract":"A formula is given that makes it possible to reduce the calculation of an interpolation functor on a pair of local Morrey spaces to the calculation of this functor on pairs of vector function spaces constructed from the ideal spaces involved in the definition of the Morrey spaces in question. It is shown that a pair of local Morrey spaces is \n\n \n K\n K\n \n\n-monotone if and only if the pair of vector function spaces mentioned above is \n\n \n K\n K\n \n\n-monotone. This reduction makes it possible to obtain new interpolation theorems even for classical local spaces.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On interpolation and 𝐾-monotonicity for discrete local Morrey spaces\",\"authors\":\"E. Berezhnoi\",\"doi\":\"10.1090/spmj/1707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A formula is given that makes it possible to reduce the calculation of an interpolation functor on a pair of local Morrey spaces to the calculation of this functor on pairs of vector function spaces constructed from the ideal spaces involved in the definition of the Morrey spaces in question. It is shown that a pair of local Morrey spaces is \\n\\n \\n K\\n K\\n \\n\\n-monotone if and only if the pair of vector function spaces mentioned above is \\n\\n \\n K\\n K\\n \\n\\n-monotone. This reduction makes it possible to obtain new interpolation theorems even for classical local spaces.\",\"PeriodicalId\":51162,\"journal\":{\"name\":\"St Petersburg Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/spmj/1707\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1707","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了一个公式,使插值函子在一对局部Morrey空间上的计算可以简化为该函子在由Morrey空间定义中所涉及的理想空间构造的向量函数空间对上的计算。证明了一对局部Morrey空间是K-单调的,当且仅当这对向量函数空间是K--单调的。这种约简使得即使对于经典局部空间也可以获得新的插值定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On interpolation and 𝐾-monotonicity for discrete local Morrey spaces
A formula is given that makes it possible to reduce the calculation of an interpolation functor on a pair of local Morrey spaces to the calculation of this functor on pairs of vector function spaces constructed from the ideal spaces involved in the definition of the Morrey spaces in question. It is shown that a pair of local Morrey spaces is K K -monotone if and only if the pair of vector function spaces mentioned above is K K -monotone. This reduction makes it possible to obtain new interpolation theorems even for classical local spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信