Preservation of classes of entire functions defined in terms of growth restrictions along the real axis under perturbations of their zero sets

IF 0.7 4区 数学 Q2 MATHEMATICS
N. Abuzyarova
{"title":"Preservation of classes of entire functions defined in terms of growth restrictions along the real axis under perturbations of their zero sets","authors":"N. Abuzyarova","doi":"10.1090/spmj/1716","DOIUrl":null,"url":null,"abstract":"Four special subsets of the Schwartz algebra are defined (this algebra consists of all entire functions of exponential type and of polynomial growth on the real axis). Perturbations of the zero sets for functions belonging to each of these subsets are studied. It is shown that the boundedness of the real part of the perturbing sequence is a sufficient and, generally speaking, unimprovable condition for preservation the subset from which the function in question is taken. An application of these results to spectral synthesis problems for differentiation-invariant subspaces of the Schwartz class on an interval of the real line is considered.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1716","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Four special subsets of the Schwartz algebra are defined (this algebra consists of all entire functions of exponential type and of polynomial growth on the real axis). Perturbations of the zero sets for functions belonging to each of these subsets are studied. It is shown that the boundedness of the real part of the perturbing sequence is a sufficient and, generally speaking, unimprovable condition for preservation the subset from which the function in question is taken. An application of these results to spectral synthesis problems for differentiation-invariant subspaces of the Schwartz class on an interval of the real line is considered.
在零集扰动下,用实轴生长限制定义的整函数类的保存
定义了Schwartz代数的四个特殊子集(该代数由指数型和实轴上多项式增长的所有完整函数组成)。研究了属于这些子集的函数的零集的摄动。证明了摄动序列实部的有界性是保存所讨论的函数的子集的充分条件,一般来说,是不可改进的条件。研究了这些结果在实线区间上Schwartz类的微分不变子空间的谱合成问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信